Laboratory study of avalanches in magnetized plasmas

被引:15
|
作者
Van Compernolle, B. [1 ]
Morales, G. J. [1 ]
Maggs, J. E. [1 ]
Sydora, R. D. [2 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 03期
基金
美国国家科学基金会;
关键词
SELF-ORGANIZED CRITICALITY; TURBULENT TRANSPORT; CONFINED PLASMA; DYNAMICS; SANDPILES; PARADIGM; TOKAMAKS; SYSTEMS; EVENTS; MODEL;
D O I
10.1103/PhysRevE.91.031102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfven waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Yaglom law for electrostatic turbulence in laboratory magnetized plasmas
    Lepreti, F.
    Carbone, V.
    Spolaore, M.
    Antoni, V.
    Cavazzana, R.
    Martines, E.
    Serianni, G.
    Veltri, P.
    Vianello, N.
    Zuin, M.
    EPL, 2009, 86 (02)
  • [2] Laboratory studies of the dynamic of resonance cones formation in magnetized plasmas
    Nazarov, V. V.
    Starodubtsev, M. V.
    Kostrov, A. V.
    PHYSICS OF PLASMAS, 2013, 20 (03)
  • [3] Laboratory study of erosion processes in snow avalanches
    Barbolini, M
    Biancardi, A
    Cappabianca, F
    Natale, L
    Pagliardi, M
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2005, 43 (1-2) : 1 - 9
  • [4] A new frontier in laboratory physics: magnetized electron-positron plasmas
    Stoneking, M. R.
    Pedersen, T. Sunn
    Helander, P.
    Chen, H.
    Hergenhahn, U.
    Stenson, E. V.
    Fiksel, G.
    von der Linden, J.
    Saitoh, H.
    Surko, C. M.
    Danielson, J. R.
    Hugenschmidt, C.
    Horn-Stanja, J.
    Mishchenko, A.
    Kennedy, D.
    Deller, A.
    Card, A.
    Nissl, S.
    Singer, M.
    Singer, M.
    Koenig, S.
    Willingale, L.
    Peebles, J.
    Edwards, M. R.
    Chin, K.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (06)
  • [5] Spectroscopy of magnetized plasmas
    Godbert-Mouret, L
    Koubiti, M
    Stamm, R
    Touati, K
    Felts, B
    Capes, H
    Corre, Y
    Guirlet, R
    De Michelis, C
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 71 (2-6): : 365 - 372
  • [6] FUSION IN MAGNETIZED PLASMAS
    RIVIERE, AC
    NATURE, 1985, 314 (6009) : 322 - 323
  • [7] Avalanches driven by pressure gradients in a magnetized plasma
    Van Compernolle, B.
    Morales, G. J.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [8] Simulation study of surfing acceleration in magnetized space plasmas
    Eliasson, B
    Dieckmann, ME
    Shukla, PK
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [9] Experimental study on the velocity limits of magnetized rotating plasmas
    Teodorescu, C.
    Clary, R.
    Ellis, R. F.
    Hassam, A. B.
    Lunsford, R.
    Uzun-Kaymak, I.
    Young, W. C.
    PHYSICS OF PLASMAS, 2008, 15 (04)
  • [10] Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas
    Schaeffer, D. B.
    Fox, W.
    Matteucci, J.
    Lezhnin, K. V.
    Bhattacharjee, A.
    Germaschewski, K.
    PHYSICS OF PLASMAS, 2020, 27 (04)