Preliminary analysis and evaluation of BDS-2/BDS-3 precise point positioning

被引:18
|
作者
Chen, Hua [1 ]
Liu, Xuexi [1 ,2 ,3 ]
Jiang, Weiping [1 ,4 ]
Yuan, Peng [5 ]
Ju, Boxiao [4 ]
Chen, Yan [4 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, 129 Luoyu Rd, Wuhan 430079, Peoples R China
[2] Tech Univ Berlin, D-10623 Berlin, Germany
[3] GeoForschungsZentrum GFZ, Telegrafenberg A17, D-14473 Potsdam, Germany
[4] Wuhan Univ, GNSS Res Ctr, 129 Luoyu Rd, Wuhan 430079, Peoples R China
[5] Karlsruhe Inst Technol, Geodet Inst, Karlsruhe, Germany
基金
美国国家科学基金会;
关键词
BDS-2; BDS-3; Precise Point Positioning; Inter-system bias; PDOP; Convergence time; GPS; BEIDOU; SATELLITE; SYSTEM; RECEIVER; GLONASS; IMPACT; BDS;
D O I
10.1016/j.asr.2021.07.044
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Precise point positioning (PPP) is a very important function of satellite navigation system. In this contribution, the combination of BDS-2 and BDS-3 PPP is researched. To begin with, the frequency and application of BDS-2 and BDS-3 are introduced. Then, the prin-ciple of BDS-2 and BDS-3 combined PPP, the generation and estimation method of inter-system bias (ISB) are elaborated. Finally, the global satellite visibility of BDS-2 and BDS-3, the global Position Dilution of Precision (PDOP) value and the results of BDS-2/BDS-3 PPP are analyzed based on the 51-day data of 30 stations from multi-GNSS experiment (MGEX) network in 2020. The experimental results show that: (1) The number of visible satellites of BDS-2 in Asia Pacific region is 8-15, while the number of visible satellites in most parts of the western hemisphere is less than 4; the number of visible satellites of BDS-3 in the eastern hemisphere is 8-14, while the number of visible satellites in the western hemisphere is 7-11; BDS-3 is more evenly distributed in the world than BDS-2, but the number of satellites in the eastern hemisphere is also slightly more than that in the western hemisphere. (2) The root mean square (RMS) of BDS-2/BDS-3 static PPP in the East (E), North (N) and Up (U) directions are 1.0 cm, 0.6 cm and 1.7 cm respectively; the positioning accuracy of BDS-2/BDS-3 PPP in the E, N and U directions are improved by 16.7%, 14.3% and 10.5% respectively compared with BDS-3 PPP. The RMS of BDS-2/BDS-3 kinematic PPP in the E, N and U directions are 2.0 cm, 1.3 cm and 4.1 cm respectively; the positioning accuracy of BDS-2/BDS-3 PPP in the E, N and U directions are improved by 33.3%, 38.1% and 29.3% respectively compared with BDS-3 PPP. (3) Compared with BDS-3 static PPP, the convergence time of BDS-2/BDS-3 are shortened by 6.1%, 11.5%, 10.1% and 10.3% in the E, N, U and three dimensional (3D) directions respectively. Compared with BDS-2, the convergence time of BDS-3 is shortened by more than 50%. The convergence time of BDS-2/BDS-3 kinematic PPP in the E, N, U and 3D directions is shorter than BDS-3 by 31.1%, 43.8%, 38.1% and 34.6% respectively; the convergence time of BDS-3 is shorter than BDS-2 by 61.1%, 59.7%, 60.9% and 57.1% respectively. In brief, the success of BDS-3 global networking has greatly promoted the positioning performance of the entire BDS system. (C) 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:4113 / 4128
页数:16
相关论文
共 50 条
  • [1] Evaluation of BDS-2/BDS-3 Precise Point Positioning Performance in Polar Region
    Cheng, Quanrun
    Zhang, Yize
    Chen, Junping
    CHINA SATELLITE NAVIGATION CONFERENCE PROCEEDINGS, CSNC 2022, VOL III, 2022, 910 : 161 - 172
  • [2] Precise point positioning with BDS-2 and BDS-3 constellations: ambiguity resolution and positioning comparison
    Hu, Jiahuan
    Li, Pan
    Zhang, Xiaohong
    Bisnath, Sunil
    Pan, Lin
    ADVANCES IN SPACE RESEARCH, 2022, 70 (07) : 1830 - 1846
  • [3] Performance Evaluation of Real-Time Precise Point Positioning with Both BDS-3 and BDS-2 Observations
    Pan, Lin
    Li, Xuanping
    Yu, Wenkun
    Dai, Wujiao
    Kuang, Cuilin
    Chen, Jun
    Chen, Fade
    Xia, Pengfei
    SENSORS, 2020, 20 (21) : 1 - 20
  • [4] Improving BDS-2 and BDS-3 joint precise point positioning with time delay bias estimation
    Jiao, Guoqiang
    Song, Shuli
    Jiao, Wenhai
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (02)
  • [5] BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis
    Zhu S.
    Yue D.
    He L.
    Chen J.
    Liu S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (12): : 2049 - 2059
  • [6] Preliminary Analysis of Intersystem Biases in BDS-2/BDS-3 Precise Time and Frequency Transfer
    Zhang, Pengfei
    Tu, Rui
    Tao, Linlin
    Wang, Bing
    Gao, Yuping
    Lu, Xiaochun
    REMOTE SENSING, 2022, 14 (18)
  • [7] Initial Performance Evaluation of Precise Point Positioning with Triple-Frequency Observations from BDS-2 and BDS-3 Satellites
    Zhang, Wenjie
    Yang, Hongzhen
    He, Chen
    Wang, Zhiqiang
    Shao, Weiping
    Zhang, Yongfeng
    Wang, Jing
    JOURNAL OF NAVIGATION, 2020, 73 (04): : 763 - 775
  • [8] Evaluation of Inter-System Bias between BDS-2 and BDS-3 Satellites and Its Impact on Precise Point Positioning
    Zhao, Wen
    Chen, Hua
    Gao, Yang
    Jiang, Weiping
    Liu, Xuexi
    REMOTE SENSING, 2020, 12 (14)
  • [9] An improved tightly coupled model for precise point positioning ambiguity resolution with the Joint BDS-2 and BDS-3
    Tian, Yuan
    Zheng, Fu
    Gong, Xiaopeng
    Zhang, Dong
    Shi, Chuang
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [10] Impact of BDS-3 experimental satellites to BDS-2: Service area, precise products, precise positioning
    Zhang, Rui
    Tu, Rui
    Liu, Jinhai
    Hong, Ju
    Fan, Lihong
    Zhang, Pengfei
    Lu, Xiaochun
    ADVANCES IN SPACE RESEARCH, 2018, 62 (04) : 829 - 844