Noise fit, estimation error and a Sharpe information criterion

被引:1
|
作者
Paulsen, Dirk [1 ]
Sohl, Jakob [2 ]
机构
[1] John St Capital LLP, London, England
[2] Delft Univ Technol, Delft, Netherlands
关键词
Model selection; Sharpe ratio; Akaike information criterion; AIC; Backtesting; Noise fit; Overfit; Estimation error; Sharpe ratio information criterion; SRIC; PORTFOLIO SELECTION; CHOICE; RATIO; MODEL;
D O I
10.1080/14697688.2020.1718746
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
When the in-sample Sharpe ratio is obtained by optimizing over a k-dimensional parameter space, it is a biased estimator for what can be expected on unseen data (out-of-sample). We derive (1) an unbiased estimator adjusting for both sources of bias: noise fit and estimation error. We then show (2) how to use the adjusted Sharpe ratio as model selection criterion analogously to the Akaike Information Criterion (AIC). Selecting a model with the highest adjusted Sharpe ratio selects the model with the highest estimated out-of-sample Sharpe ratio in the same way as selection by AIC does for the log-likelihood as a measure of fit.
引用
收藏
页码:1027 / 1043
页数:17
相关论文
共 50 条
  • [1] Multipath Estimation Based on Centered Error Entropy Criterion for Non-Gaussian Noise
    Cheng, Lan
    Ren, Mi F.
    Xie, Gang
    IEEE ACCESS, 2016, 4 : 9978 - 9986
  • [2] Additive Non-Gaussian Noise Channel Estimation by Using Minimum Error Entropy Criterion
    Heravi, Ahmad Reza
    Hodtani, Ghosheh Abed
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2017, : 181 - 186
  • [3] Error whitening criterion for linear filter estimation
    Rao, YN
    Erdogmus, D
    Principe, JC
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1447 - 1452
  • [4] CRITERION OF ESTIMATION BASED ON MEASURES OF INFORMATION
    PAPAIOAN.T
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2179 - &
  • [5] AN INFORMATION CRITERION FOR NORMAL REGRESSION ESTIMATION
    SOOFI, ES
    GOKHALE, DV
    STATISTICS & PROBABILITY LETTERS, 1991, 11 (02) : 111 - 117
  • [6] General relative error criterion and M-estimation
    Ying Yang
    Fei Ye
    Frontiers of Mathematics in China, 2013, 8 : 695 - 715
  • [7] General relative error criterion and M-estimation
    Yang, Ying
    Ye, Fei
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (03) : 695 - 715
  • [8] Are the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) Applicable in Determining the Optimal Fit and Simplicity of Mechanistic Models?
    Harbecke, Jens
    Grunau, Jonas
    Samanek, Philip
    INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE, 2024, 37 (1-2) : 17 - 36
  • [9] A RISK OF DIAGNOSTIC ERROR AS A CRITERION OF THE VALUE OF DIAGNOSTIC INFORMATION
    MINTSER, OP
    KANEVSKY, VA
    SPITKOVSKY, AI
    VESTNIK AKADEMII MEDITSINSKIKH NAUK SSSR, 1988, (09): : 74 - 81
  • [10] Adaptive noise cancellation method based on error whitening criterion
    Wen, Jing
    Wen, Yumei
    Li, Ping
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2010, 31 (08): : 1693 - 1699