On algebras obtained by tensor product

被引:3
|
作者
Remm, Elisabeth [1 ]
Goze, Michel [1 ]
机构
[1] Univ Haute Alsace, LMIA EA 3993, F-68093 Mulhouse, France
关键词
Tensor product of algebras over quadratic operads; LIE-ADMISSIBLE ALGEBRAS; OPERADS;
D O I
10.1016/j.jalgebra.2010.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be a quadratic operad with only one generating operation. We define an associated maximal operad (P) over tilde such that for any P-algebra A and (P) over tilde -algebra B. the algebra A circle times B is again a P-algebra for the classical tensor product. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 30
页数:18
相关论文
共 50 条
  • [1] THE TENSOR PRODUCT OF ALGEBRAS
    Tabaa, Mohamed
    MATHEMATICA SCANDINAVICA, 2016, 119 (01) : 5 - 13
  • [2] TENSOR PRODUCT OF W ALGEBRAS
    RENSHAW, BB
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 194 (JUL) : 337 - 347
  • [3] Tensor Product of Evolution Algebras
    Casado, Yolanda Cabrera
    Barquero, Dolores Martin
    Gonzalez, Candido Martin
    Tocino, Alicia
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [4] Tensor product of filtered A∞-algebras
    Amorim, Lino
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (12) : 3984 - 4016
  • [5] On the tensor product of composition algebras
    Morandi, PJ
    Pérez-Izquierdo, JM
    Pumplün, S
    JOURNAL OF ALGEBRA, 2001, 243 (01) : 41 - 68
  • [6] NOTE ON TENSOR PRODUCT OF ALGEBRAS
    HART, R
    JOURNAL OF ALGEBRA, 1972, 21 (03) : 422 - &
  • [7] ON TENSOR PRODUCT OF W'-ALGEBRAS
    SAKAI, S
    AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (02) : 335 - &
  • [8] TENSOR PRODUCT OF MUNN ALGEBRAS
    Alluqmani, Eman
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2023, 61 (02): : 101 - 108
  • [9] TENSOR PRODUCT OF STANDARD ALGEBRAS
    VAROPOULOS, NT
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (18): : 1193 - 1195
  • [10] Derivations of tensor product algebras
    Azam, Saeid
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 905 - 927