Numerical investigations of stochastic HIV/AIDS infection model

被引:13
|
作者
Zafar, Zain Ul Abadin [1 ]
Ali, Nigar [2 ]
Younas, Samina [3 ]
Abdelwahab, Sayed F. [4 ]
Nisar, Kottakkaran Sooppy [5 ]
机构
[1] Univ Cent Punjab, Fac Sci, Dept Math, Lahore, Pakistan
[2] Univ Malakand, Dept Math, Chakdara, Pakistan
[3] Govt Coll Univ, Dept Zool, Lahore, Pakistan
[4] Taif Univ, Coll Pharm, Dept Pharmaceut & Ind Pharm, POB 11099, At Taif 21944, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser, Saudi Arabia
关键词
HIV/AIDS epidemic model; Stochastic differential equations (SDEs); Milstein scheme; Stochastic NSFD scheme (SNSFD); Stochastic Euler scheme (SES); Stochastic Runge-Kutta 4 (SRK-4) scheme; EPIDEMIC MODEL; AIDS EPIDEMIC; HIV; TRANSMISSION; STABILITY; DYNAMICS; SPREAD;
D O I
10.1016/j.aej.2021.04.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a stochastic HIV/AIDS epidemic model has been studied numerically. A discussion among the solutions related to deterministic HIV/AIDS model and stochastic HIV/AIDS epidemic model has shown that the stochastic solution is more realistic than the deterministic solution. To control the diseases, the threshold parameter R-0 plays a key role in the stochastic HIV/AIDS epidemic model. If R-0 < 1 then disease is under control while the disease is out of control if R-0 > 1. The explicit approaches such as the Milstein scheme, stochastic Euler scheme, and stochastic Runge-Kutta 4 are dependent on temporal step size, whereas non-standard finite difference approaches are independent of step size. The results for numerical approaches like the Milstein scheme, stochastic Euler scheme, and stochastic Runge-Kutta 4 scheme fail for outsized step size. The stochastic non-standard finite difference scheme conserves dynamic features like confinedness, consistency and positivity. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:5341 / 5363
页数:23
相关论文
共 50 条
  • [1] Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis
    Rao, Feng
    Luo, Junling
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [2] Numerical simulation and analysis of the stochastic HIV/AIDS model in fractional order
    Zafar, Zain Ul Abadin
    Darassi, Mahmoud H.
    Ahmad, Irfan
    Assiri, Taghreed A.
    Meetei, Mutum Zico
    Khan, Muhammad Altaf
    Hassan, Ahmed M.
    RESULTS IN PHYSICS, 2023, 53
  • [3] A Stochastic model for the HIV/AIDS dynamic evolution
    Di Biase, Giuseppe
    D'Amico, Guglielmo
    Di Girolamo, Arturo
    Janssen, Jacques
    Iacobelli, Stefano
    Tinari, Nicola
    Manca, Raimondo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007
  • [4] A stochastic SICA model for HIV/AIDS transmission
    Tan, Yiping
    Cai, Yongli
    Sun, Xiaodan
    Wang, Kai
    Yao, Ruoxia
    Wang, Weiming
    Peng, Zhihang
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [5] The Numerical Approximation to a Stochastic Age-Structured HIV/AIDS Model with Nonlinear Incidence Rates
    Ren, Jie
    Yuan, Huaimin
    Zhang, Qimin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 685 - 712
  • [6] Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a two-sex population
    Raza, Ali
    Rafiq, Muhammad
    Baleanu, Dumitru
    Shoaib Arif, Muhammad
    Naveed, Muhammad
    Ashraf, Kaleem
    IET SYSTEMS BIOLOGY, 2019, 13 (06) : 305 - 315
  • [7] Numerical analysis of a model for the spread of HIV/AIDS
    Iannelli, M
    Loro, R
    Milner, FA
    Pugliese, A
    Rabbiolo, G
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) : 864 - 882
  • [8] Stochastic dynamics of an HIV/AIDS epidemic model with treatment
    Nsuami, Mozart U.
    Witbooi, Peter J.
    QUAESTIONES MATHEMATICAE, 2019, 42 (05) : 605 - 621
  • [9] GLOBAL STABILITY OF AN HIV/AIDS MODEL WITH STOCHASTIC PERTURBATION
    Yang, Junyuan
    Wang, Xiaoyai
    Li, Xuezhi
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (02) : 349 - 358
  • [10] A stochastic age-structured HIV/AIDS model based on parameters estimation and its numerical calculation
    Ren, Jie
    Zhang, Qimin
    Li, Xining
    Cao, Feilong
    Ye, Ming
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 159 - 180