Approximate solution of the system of nonlinear integral equation by Newton-Kantorovich method

被引:3
|
作者
Eshkuvatov, Z. K.
Ahmedov, Anvarjon
Long, N. M. A. Nik
Shafiq, O.
机构
[1] Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM)
[2] Department of Process and Food Engineering, Faculty of Engineering, UPM
[3] Institute for Mathematical Research, UPM
关键词
Newton-Kantorovich method; Rate of convergence; Nonlinear operator; Volterra integral equation; Trapezoidal formula;
D O I
10.1016/j.amc.2010.09.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Newton-Kantorovich method is developed for solving the system of nonlinear integral equations. The existence and uniqueness of the solution are proved, and the rate of convergence of the approximate solution is established. Finally, numerical examples are provided to show the validity and the efficiency of the method presented. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:3717 / 3725
页数:9
相关论文
共 50 条
  • [1] Solving system of nonlinear integral equations by Newton-Kantorovich method
    Hameed, Hameed Husam
    Eshkuvatov, Z. K.
    Muminov, Z.
    Kilicman, Adem
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 518 - 523
  • [2] Newton-Kantorovich approximations to nonlinear singular integral equation with shift
    Dardery, Samah M.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8873 - 8882
  • [3] ON APPROXIMATE SOLUTION OF ONE CLASS OF NONLINEAR TWO-DIMENSIONAL SINGULAR INTEGRAL EQUATIONS BY NEWTON-KANTOROVICH METHOD
    Musaev, Binali I.
    Mamedova, Natavan P.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2007, 27 (35): : 57 - 68
  • [4] One dimensional nonlinear integral operator with Newton-Kantorovich method
    Eshkuvatov, Z. K.
    Hameed, Hameed Husam
    Long, N. M. A. Nik
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (02) : 172 - 177
  • [5] AN APPROXIMATE SOLUTION TO GRAVITY INVERSION PROBLEMS USING THE NEWTON-KANTOROVICH METHOD
    BOYKLOV, IV
    SHCHUKINA, VE
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1989, (11): : 67 - 78
  • [6] NEWTON-KANTOROVICH METHOD IN A STUDY OF LOW EQUATION
    MCDANIEL, H
    WARNOCK, RL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (01): : 58 - &
  • [7] On the approximate solution of an autonomous boundary-value problem by the Newton-Kantorovich method
    Chuiko S.M.
    Boichuk I.A.
    Pirus O.E.
    Journal of Mathematical Sciences, 2013, 189 (5) : 867 - 881
  • [8] On solving an n x n system of nonlinear Volterra integral equations by the Newton-Kantorovich method
    Hameed, Hameed Husam
    Eshkuvatov, Z. K.
    Long, N. M. A. Nik
    SCIENCEASIA, 2016, 42 : 11 - 18
  • [9] ON THE APPLICATION OF THE NEWTON-KANTOROVICH METHOD TO NONLINEAR INTEGRAL-EQUATIONS OF URYSON TYPE
    APPELL, J
    DEPASCALE, E
    ZABREJKO, PP
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1991, 12 (3-4) : 271 - 283
  • [10] APPLICATION OF APPROXIMATE VARIANT OF THE NEWTON-KANTOROVICH METHOD IN SOLVING THE NONLINEAR BOUNDARY-PROBLEM
    TUKHVATULLIN, RA
    MUSTAFIN, RF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1988, (11): : 80 - 82