Dipole and tripole metallodielectric photonic bandgap (MPBG) structures for microwave filter and antenna applications

被引:20
|
作者
Lee, YLR [1 ]
Chauraya, A [1 ]
Lockyer, DS [1 ]
Vardaxoglu, JC [1 ]
机构
[1] Loughborough Univ Technol, Dept Elect & Elect Engn, Loughborough LE11 3TU, Leics, England
来源
IEE PROCEEDINGS-OPTOELECTRONICS | 2000年 / 147卷 / 06期
关键词
D O I
10.1049/ip-opt:20000892
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A photonic band gap structure made from periodic arrays of conducting dipoles and tripoles on a dielectric is presented. Using the proposed structures, several example devices have been demonstrated for microstrip resonators and filters as well as patch antennas. Measured and predicted frequency responses of a microstrip line using a dual dipole metallodielectric photonic bandgap (MPBG) structure show a 40% band width centred at 10 GHz. A planar microstrip resonator using a dipole MPBG shows a slower wave performance and a higher Q factor when compared with the conventional half-wavelength resonator. Three patch antenna designs on different dielectric constant substrates using a tripole MBPG produce better return loss, higher boresight gains (up to 3 dB) and smoother radiation patterns as a result of surface wave suppression.
引用
收藏
页码:395 / 400
页数:6
相关论文
共 50 条
  • [1] Influence of metallic photonic bandgap (MPBG) materials interface on dipole radiation characteristics
    Poilasne, G
    Pouliguen, P
    Mahdjoubi, K
    Terret, C
    Gelin, P
    Desclos, L
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1998, 18 (06) : 407 - 410
  • [2] Applications of metallodielectric core-shell particles in photonic bandgap composites.
    Foulger, SH
    Bao, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U364 - U364
  • [3] Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays
    Feresidis, AP
    Apostolopoulos, G
    Serfas, N
    Vardaxoglou, JC
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (05) : 1149 - 1158
  • [4] Characterization of microwave photonic band-gap structures with bandpass filter applications
    Wu, J. H.
    Shih, I.
    Qiu, S. N.
    Qiu, C. X.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2006, 24 (03): : 827 - 830
  • [5] Photonic Structures in the Microwave Band and Their Applications
    Usanov, D. A.
    Skripal, Al V.
    Skripal, An V.
    Abramov, A. V.
    Bogolubov, A. S.
    Kulikov, M. Y.
    Ponomarev, D. V.
    18TH INTERNATIONAL CONFERENCE ON MICROWAVES, RADAR AND WIRELESS COMMUNICATIONS (MIKON-2010), VOL 1 AND VOL 2, 2010,
  • [6] Wideband compact dipole antenna for microwave imaging applications
    Abbak, Mehmet
    Akinci, Mehmet Nuri
    Ertay, Agah Oktay
    Ozgur, Selcuk
    Isik, Cevdet
    Akduman, Ibrahim
    IET MICROWAVES ANTENNAS & PROPAGATION, 2017, 11 (02) : 265 - 270
  • [7] Dual electromagnetic bandgap CPW structures for filter applications
    Martín, F
    Falcone, F
    Bonache, J
    Lopetegi, T
    Laso, MAG
    Sorolla, M
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (09) : 393 - 395
  • [8] Terahertz Dipole Antenna Performance Enhancement Using A Photonic-Bandgap GaAs Substrate
    Yin, Wenfei
    Khamas, Salam K.
    Hogg, Richard A.
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 1015 - +
  • [9] Characteristics of microwave filters based on microstrip photonic bandgap ring structures
    Kim, SI
    Jang, MY
    Kee, CS
    Park, I
    Lim, H
    CURRENT APPLIED PHYSICS, 2005, 5 (06) : 619 - 624
  • [10] Photonic bandgap crystals on magnetic-dielectric for microwave frequency applications
    Tiwari, Manoj K.
    Gupta, K. K.
    Gupta, H. C.
    Dube, D. C.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES III (I.E. V), 2006, 6182