Nonparametric inference for the proportionality function in the random censorship model

被引:0
|
作者
Hollander, M [1 ]
Laird, G
Song, KS
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ctr Stat Consulting, Tallahassee, FL 32306 USA
基金
美国国家卫生研究院;
关键词
random censorship model; proportional hazards model; nonparametric estimation; proportionality function; weak convergence; uniform convergence;
D O I
10.1080/1048525031000089329
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By generalizing the proportional hazards model, we introduce a new function beta(t), which we call the proportionality function, and which we show plays a role in studying aspects of the randomly censored model. We develop an asymptotically efficient nonparametric estimator of beta(t), establish its uniform consistency, and obtain a weak convergence result. Furthermore, a confidence band for beta(t), based on the bootstrap, is developed. The results are applied to an actual dataset.
引用
收藏
页码:151 / 169
页数:19
相关论文
共 50 条