Markov chain Monte Carlo and models of consideration set and parameter heterogeneity

被引:0
|
作者
Chiang, JW [1 ]
Chib, S
Narasimhan, C
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Peoples R China
[2] Washington Univ, Dept Business & Publ Adm, St Louis, MO 63130 USA
[3] Washington Univ, John M Olin Sch Business, St Louis, MO 63130 USA
关键词
heterogeneity; consideration set; random effect; brand choice models; metropolis-hasting algorithm;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper the authors propose an integrated consideration set-brand choice model that is capable of accounting for the heterogeneity in consideration set and in the parameters of the brand choice model. The model is estimated by an approximation free Markov chain Monte Carlo sampling procedure and is applied to a scanner panel data. The main findings are: ignoring consideration set heterogeneity understates the impact of marketing mix and overstates the impact of preferences and past purchase feedback even when heterogeneity in parameters is modeled; the estimate of consideration set heterogeneity is robust to the inclusion of parameter heterogeneity; when consideration set heterogeneity is included the parameter heterogeneity takes on considerably less importance; the promotional response of households depends on their consideration set even if the underlying choice parameters are identical. (C) 1999 Elsevier Science S.A. All rights reserved. JEL classification: C1; C5; D1; M3.
引用
收藏
页码:223 / 248
页数:26
相关论文
共 50 条
  • [1] Markov chain Monte Carlo and models of consideration set and parameter heterogeneity
    Chiang, Jeongwen
    Chib, Siddhartha
    Narasimhan, Chakravarthi
    Journal of Econometrics, 1998, 89 (1-2): : 223 - 248
  • [2] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [3] Markov Chain Monte Carlo Methods for Parameter Estimation in Multidimensional Continuous Time Markov Switching Models
    Hahn, Markus
    Fruehwirth-Schnatter, Sylvia
    Sass, Joern
    JOURNAL OF FINANCIAL ECONOMETRICS, 2010, 8 (01) : 88 - 121
  • [4] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [5] Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation
    Henriques, Bruno M. B.
    Thomas, Peter A.
    Oliver, Seb
    Roseboom, Isaac
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (01) : 535 - 547
  • [6] Exploring heterogeneity in tumour data using Markov chain Monte Carlo
    de Gunst, MCM
    Dewanji, A
    Luebeck, EG
    STATISTICS IN MEDICINE, 2003, 22 (10) : 1691 - 1707
  • [7] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [8] Parameter Estimation in Continuous Time Markov Switching Models: A Semi-Continuous Markov Chain Monte Carlo Approach
    Hahn, Markus
    Sass, Joern
    BAYESIAN ANALYSIS, 2009, 4 (01): : 63 - 84
  • [9] Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    Anderson-Bergman, Clifford
    BAYESIAN ANALYSIS, 2017, 12 (02): : 465 - 490
  • [10] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +