On the Parallel Proximal Decomposition Method for Solving the Problems of Convex Optimization

被引:9
|
作者
Semenov, V. V. [1 ]
机构
[1] Kiev Natl Taras Shevchenko Univ, Kiev, Ukraine
关键词
convex optimization; parallel proximal decomposition; parallel computer systems; parallel decomposition algorithm; parallel processing; MONOTONE-OPERATORS; CONVERGENCE; ALGORITHMS; SUM;
D O I
10.1615/JAutomatInfScien.v42.i4.20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The parallel proximal decomposition algorithm for solving the problem of convex minimization in the Hilbert space is studied. The theorem on weak convergence of Cesaro averages of the sequence generated by the algorithm is proved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [1] A proximal decomposition method for solving convex variational inverse problems
    Combettes, Patrick L.
    Pesquet, Jean-Christophe
    INVERSE PROBLEMS, 2008, 24 (06)
  • [2] A proximal gradient splitting method for solving convex vector optimization problems
    Bello-Cruz, Yunier
    Melo, Jefferson G.
    Serra, Ray V. G.
    OPTIMIZATION, 2022, 71 (01) : 33 - 53
  • [3] An asynchronous subgradient-proximal method for solving additive convex optimization problems
    Tipsuda Arunrat
    Sakrapee Namsak
    Nimit Nimana
    Journal of Applied Mathematics and Computing, 2023, 69 : 3911 - 3936
  • [4] An asynchronous subgradient-proximal method for solving additive convex optimization problems
    Arunrat, Tipsuda
    Namsak, Sakrapee
    Nimana, Nimit
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (05) : 3911 - 3936
  • [5] A bundle interior proximal method for solving convex minimization problems
    Van, NTT
    Nguyen, VH
    Strodiot, JJ
    JOURNAL OF CONVEX ANALYSIS, 2005, 12 (01) : 95 - 111
  • [6] Epigraphical projection and proximal tools for solving constrained convex optimization problems
    Chierchia, G.
    Pustelnik, N.
    Pesquet, J. -C.
    Pesquet-Popescu, B.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (08) : 1737 - 1749
  • [7] Epigraphical projection and proximal tools for solving constrained convex optimization problems
    G. Chierchia
    N. Pustelnik
    J.-C. Pesquet
    B. Pesquet-Popescu
    Signal, Image and Video Processing, 2015, 9 : 1737 - 1749
  • [8] A PROXIMAL-BASED DECOMPOSITION METHOD FOR CONVEX MINIMIZATION PROBLEMS
    CHEN, G
    TEBOULLE, M
    MATHEMATICAL PROGRAMMING, 1994, 64 (01) : 81 - 101
  • [9] Proximal Gradient Method for Solving Bilevel Optimization Problems
    Yimer, Seifu Endris
    Kumam, Poom
    Gebrie, Anteneh Getachew
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (04)
  • [10] DECOMPOSITION METHOD OF SOLVING A CLASS OF COMBINATORIAL OPTIMIZATION PROBLEMS
    KRAVETS, VL
    SERGIENKO, IV
    CYBERNETICS, 1983, 19 (06): : 833 - 837