An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit

被引:5
|
作者
Bollepalli, Sandeep Chandra [1 ]
Sahani, Ashish Kumar [2 ]
Aslam, Naved [3 ]
Mohan, Bishav [3 ]
Kulkarni, Kanchan [1 ]
Goyal, Abhishek [3 ]
Singh, Bhupinder [3 ]
Singh, Gurbhej [3 ]
Mittal, Ankit [3 ]
Tandon, Rohit [3 ]
Chhabra, Shibba Takkar [3 ]
Wander, Gurpreet S. S. [3 ]
Armoundas, Antonis A. A. [1 ,4 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02129 USA
[2] Indian Inst Technol Ropar, Dept Biomed Engn, Rupnagar 140001, India
[3] Dayanand Med Coll & Hosp, Hero DMC Heart Inst, Dept Cardiol, Ludhiana 141001, Punjab, India
[4] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
machine learning; mortality; duration of stay; heart failure; STEMI; pulmonary embolism; INPATIENT MORTALITY; EJECTION FRACTION; ACUTE PHYSIOLOGY; ST-ELEVATION; BIG-DATA; SCORE; PATIENT; RISK;
D O I
10.3390/diagnostics12020241
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Risk stratification at the time of hospital admission is of paramount significance in triaging the patients and providing timely care. In the present study, we aim at predicting multiple clinical outcomes using the data recorded during admission to a cardiac care unit via an optimized machine learning method. This study involves a total of 11,498 patients admitted to a cardiac care unit over two years. Patient demographics, admission type (emergency or outpatient), patient history, lab tests, and comorbidities were used to predict various outcomes. We employed a fully connected neural network architecture and optimized the models for various subsets of input features. Using 10-fold cross-validation, our optimized machine learning model predicted mortality with a mean area under the receiver operating characteristic curve (AUC) of 0.967 (95% confidence interval (CI): 0.963-0.972), heart failure AUC of 0.838 (CI: 0.825-0.851), ST-segment elevation myocardial infarction AUC of 0.832 (CI: 0.821-0.842), pulmonary embolism AUC of 0.802 (CI: 0.764-0.84), and estimated the duration of stay (DOS) with a mean absolute error of 2.543 days (CI: 2.499-2.586) of data with a mean and median DOS of 6.35 and 5.0 days, respectively. Further, we objectively quantified the importance of each feature and its correlation with the clinical assessment of the corresponding outcome. The proposed method accurately predicts various cardiac outcomes and can be used as a clinical decision support system to provide timely care and optimize hospital resources.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine learning score to predict in-hospital outcomes in patients hospitalized in cardiac intensive care unit
    Weizman, Orianne
    Hamzi, Kenza
    Henry, Patrick
    Schurtz, Guillaume
    Hauguel-Moreau, Marie
    Trimaille, Antonin
    Bedossa, Marc
    Dib, Jean Claude
    Attou, Sabir
    Boukertouta, Tanissia
    Boccara, Franck
    Pommier, Thibaut
    Lim, Pascal
    Bochaton, Thomas
    Millischer, Damien
    Merat, Benoit
    Picard, Fabien
    Grinberg, Nissim
    Sulman, David
    Pasdeloup, Bastien
    El Ouahidi, Yassine
    Goncalves, Trecy
    Vicaut, Eric
    Dillinger, Jean-Guillaume
    Toupin, Solenn
    Pezel, Theo
    ADDICT ICCU Investigators, Victor
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2025, 6 (02): : 218 - 227
  • [2] Glycaemia at admission accurately predicts in-hospital outcome in acute coronary syndrome patients
    Monteiro, S.
    Costa, S.
    Goncalves, F.
    Monteiro, P.
    Goncalves, L.
    Freitas, M.
    Providencia, L. A.
    CIRCULATION, 2008, 118 (12) : E357 - E357
  • [3] Machine-learning score to predict in-hospital outcomes in patients Hospitalized in Intensive Cardiac Care Unit
    Weizman, O.
    Pezel, T.
    Hamzi, K.
    Schurtz, G.
    Hauguel-Moreau, M.
    Trimaille, A.
    Toupin, S.
    Bochaton, T.
    Attou, S.
    Meune, C.
    Boccara, F.
    Pasdeloup, B.
    El Ouahidi, Y.
    Dillinger, J. G.
    Henry, P.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [4] ENSEMBLE MACHINE LEARNING ACCURATELY PREDICTS PEDIATRIC ICU ADMISSION RATES
    Pelletier, Jonathan
    Rakkar, Jaskaran
    Au, Alicia
    Fuhrman, Dana
    Clark, Robert
    Horvat, Christopher
    CRITICAL CARE MEDICINE, 2021, 49 (01) : 236 - 236
  • [5] An Externally Validated Machine Learning Ensemble Model Accurately Predicts Important Neurosurgical Outcomes
    Muhlestein, Whitney
    Chambless, Lola Blackwell
    NEUROSURGERY, 2017, 64 : 292 - 292
  • [6] Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest
    Mayampurath, Anoop
    Hagopian, Raffi
    Venable, Laura
    Carey, Kyle
    Edelson, Dana
    Churpek, Matthew
    CRITICAL CARE MEDICINE, 2022, 50 (02) : E162 - E172
  • [7] Effects of a medical admission unit on in-hospital patient flow and clinical outcomes
    Canetta, Ciro
    Accordino, Silvia
    La Boria, Elisa
    Arosio, Gianpiero
    Cacco, Silvia
    Formagnana, Pietro
    Masotti, Michela
    Provini, Stella
    Passera, Sonia
    Vigano, Giovanni
    Sozzi, Fabiola
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2024, 127 : 105 - 111
  • [8] Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission
    Brajer, Nathan
    Cozzi, Brian
    Gao, Michael
    Nichols, Marshall
    Revoir, Mike
    Balu, Suresh
    Futoma, Joseph
    Bae, Jonathan
    Setji, Noppon
    Hernandez, Adrian
    Sendak, Mark
    JAMA NETWORK OPEN, 2020, 3 (02)
  • [9] Predicting In-Hospital Mortality at Admission to the Medical Ward: A Big-Data Machine Learning Model
    Soffer, Shelly
    Klang, Eyal
    Barash, Yiftach
    Grossman, Ehud
    Zimlichman, Eyal
    AMERICAN JOURNAL OF MEDICINE, 2021, 134 (02): : 227 - +
  • [10] Increased cardiac troponin I on admission predicts in-hospital mortality in acute pulmonary embolism
    La Vecchia, L
    Ottani, F
    Favero, L
    Spadaro, GL
    Rubboli, A
    Boanno, C
    Mezzena, G
    Fontanelli, A
    Jaffe, AS
    HEART, 2004, 90 (06) : 633 - 637