Superfield integrals in high dimensions

被引:17
|
作者
Green, MB
Peeters, K
Stahn, C
机构
[1] Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
[3] Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
来源
关键词
superspaces; extended supersymmetry; supersymmetric effective theories;
D O I
10.1088/1126-6708/2005/08/093
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present an effcient, covariant, graph-based method to integrate superfields over fermionic spaces of high dimensionality. We illustrate this method with the computation of the most general sixteen-dimensional Majorana-Weyl integral in ten dimensions. Our method has applications to the construction of higher-derivative supergravity actions as well as the computation of string and membrane vertex operator correlators.
引用
收藏
页码:2327 / 2340
页数:14
相关论文
共 50 条
  • [1] GAUGE SUPERFIELD IN 6 DIMENSIONS
    BOLLINI, CG
    GIAMBIAGI, JJ
    PHYSICAL REVIEW D, 1989, 39 (04): : 1169 - 1173
  • [2] DECOMPOSITION OF THE SCALAR SUPERFIELD IN 10 DIMENSIONS
    KWON, P
    VILLASANTE, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) : 201 - 212
  • [3] On the superfield effective potential in three dimensions
    Ferrari, A. F.
    Gomes, M.
    Lehum, A. C.
    Nascimento, J. R.
    Petrov, A. Yu.
    Silva, E. O.
    da Silva, A. J.
    PHYSICS LETTERS B, 2009, 678 (05) : 500 - 503
  • [4] STRUCTURE OF THE CHIRAL SCALAR SUPERFIELD IN 10 DIMENSIONS
    KWON, PS
    VILLASANTE, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) : 3955 - 3992
  • [5] THE SUPER-POINCARE ALGEBRA AND THE SCALAR SUPERFIELD IN 10 DIMENSIONS
    VILLASANTE, M
    LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (04) : 351 - 359
  • [6] Angular integrals in d dimensions
    Somogyi, Gabor
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [7] Conformal integrals in four dimensions
    Pal, Aritra
    Ray, Koushik
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (10)
  • [8] Multiple integrals in many dimensions
    Sloan, IH
    Wozniakowski, H
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 202 : 507 - 516
  • [9] Differentiation of integrals in higher dimensions
    Parcet, Javier
    Rogers, Keith M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (13) : 4941 - 4944
  • [10] SINGULAR INTEGRALS IN 2 DIMENSIONS
    MCKIBBEN, JJ
    AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (01) : 23 - 36