Current feature selection techniques in statistical pattern recognition

被引:0
|
作者
Pudil, P [1 ]
Somol, P [1 ]
机构
[1] Acad Sci Czech Republic, Dept Pattern Recognit, Inst Informat Theory & Automat, Prague 18208 8, Czech Republic
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper addresses the problem of feature selection (abbreviated FS in the sequel) in statistical pattern recognition with particular emphasis to recent knowledge. Besides over-viewing advances in methodology it attempts to put them into a taxonomical framework. The methods discussed include the latest variants of the Branch & Bound algorithm, enhanced sub-optimal techniques and the simultaneous semi-parametric probability density function modeling and feature space selection method.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 50 条