Congruences of finite distributive concept algebras

被引:0
|
作者
Canter, B [1 ]
机构
[1] Tech Univ Dresden, Inst Algebra, Dresden, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a method to construct a formal context for the congruence lattice of a finite distributive concept algebra. This is part of a broad effort to investigate the structural properties of conceptual negations.
引用
收藏
页码:128 / 141
页数:14
相关论文
共 50 条
  • [1] Finite Distributive Concept Algebras
    Bernhard Ganter
    Léonard Kwuida
    Order, 2006, 23 : 235 - 248
  • [2] Finite distributive concept algebras
    Ganter, Bernhard
    Kwuida, Leonard
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (2-3): : 235 - 248
  • [3] EQUATIONAL THEORIES OF ALGEBRAS WITH DISTRIBUTIVE CONGRUENCES
    PADMANABHAN, R
    QUACKENBUSH, RW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (02) : 373 - 377
  • [4] Principal congruences on distributive double p-algebras
    deCarvalho, JV
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1996, 39 : 491 - 503
  • [5] On ideals and congruences of distributive demi-p-algebras
    Blyth, T. S.
    Fang, Jie
    Wang, Leibo
    STUDIA LOGICA, 2015, 103 (03) : 491 - 506
  • [6] On ideals and congruences of distributive demi-p-algebras
    T. S. Blyth
    Jie Fang
    Leibo Wang
    Studia Logica, 2015, 103 : 491 - 506
  • [7] Finite left-distributive algebras and embedding algebras
    Dougherty, R
    Jech, T
    ADVANCES IN MATHEMATICS, 1997, 130 (02) : 201 - 241
  • [8] Chain algebras of finite distributive lattices
    Gasanova, Oleksandra
    Nicklasson, Lisa
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (02) : 473 - 494
  • [9] Chain algebras of finite distributive lattices
    Oleksandra Gasanova
    Lisa Nicklasson
    Journal of Algebraic Combinatorics, 2024, 59 : 473 - 494
  • [10] Fuzzy ideals and fuzzy congruences of distributive demi-p-algebras
    Alemayehu, Teferi Getachew
    Ageze, Zebider Ayenew
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (08): : 2127 - 2137