Integrals for fully correlated Gaussians in relative coordinates

被引:8
|
作者
Harris, FE [1 ]
Monkhorst, HJ
机构
[1] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
[2] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
关键词
correlated Gaussian integrals;
D O I
10.1002/qua.20794
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article considers the integrals needed in energy computations on Coulombic systems using many-particle basis functions that are products of Gaussians in all the relative coordinates r(ij). The formulas presented are applicable to systems with arbitrary numbers of particles and with wave functions containing arbitrary nonnegative powers of all the r(ij)(2). Recursive procedures for evaluating the integrals are also given, and graph-theoretic representations are provided for multinomials entering the formulation. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:54 / 64
页数:11
相关论文
共 50 条
  • [1] Recurrence relations for fully correlated Gaussians with odd powers of interparticle coordinates
    Harris, Frank E.
    Monkhorst, Hendrik J.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (15) : 3186 - 3189
  • [2] Broadcasting Correlated Gaussians
    Bross, Shraga
    Lapidoth, Amos
    Tinguely, Stephan
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1198 - +
  • [3] Broadcasting Correlated Gaussians
    Bross, Shraga I.
    Lapidoth, Amos
    Tinguely, Stephan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) : 3057 - 3068
  • [4] Estimation of straight line parameters with fully correlated coordinates
    Amiri-Simkooei, A. R.
    Zangeneh-Nejad, F.
    Asgari, J.
    Jazaeri, S.
    MEASUREMENT, 2014, 48 : 378 - 386
  • [5] Broadcasting Correlated Vector Gaussians
    Song, Lin
    Chen, Jun
    Tian, Chao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (05) : 2465 - 2477
  • [6] Deformed explicitly correlated Gaussians
    Beutel, Matthew
    Ahrens, Alexander
    Huang, Chenhang
    Suzuki, Yasuyuki
    Varga, Kalman
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (21):
  • [7] Multiscale complexity of correlated Gaussians
    Metzler, R
    Bar-Yam, Y
    PHYSICAL REVIEW E, 2005, 71 (04)
  • [8] Edge universality of correlated Gaussians
    Adhikari, Arka
    Che, Ziliang
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [9] Theory and application of explicitly correlated Gaussians
    Mitroy, Jim
    Bubin, Sergiy
    Horiuchi, Wataru
    Suzuki, Yasuyuki
    Adamowicz, Ludwik
    Cencek, Wojciech
    Szalewicz, Krzysztof
    Komasa, Jacek
    Blume, D.
    Varga, Kalman
    REVIEWS OF MODERN PHYSICS, 2013, 85 (02) : 693 - 749
  • [10] Density matrices for correlated Gaussians: Helium and dipositronium
    Poshusta, RD
    Kinghorn, DB
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 60 (01) : 213 - 224