Interpreting angle-dependent magnetoresistance in layered materials: Application to cuprates

被引:1
|
作者
Musser, Seth [1 ]
Chowdhury, Debanjan [2 ]
Lee, Patrick A. [1 ]
Senthil, T. [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
FERMI-SURFACE; QUANTUM OSCILLATIONS; TRANSPORT; SCATTERING;
D O I
10.1103/PhysRevB.105.125105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The evolution of the low-temperature electronic structure of the cuprate metals from the overdoped to the underdoped side has recently been addressed through angle-dependant magnetoresistance (ADMR) experiments in La1.6-xNd0.4SrxCuO4. The results show a striking difference between hole dopings p = 0.24 and p = 0.21, which lie on either side of a putative quantum critical point at intermediate p. Motivated by this, we here study the theory of ADMR in correlated layered materials, paying special attention to the role of angle-dependent quasiparticle weights Z(k). Such a Z(k) is expected to characterize a number of popular models of the cuprate materials, particularly when underdoped. Further, in the limit of weak interlayer hopping the quasiparticle weight will affect the c-axis transport measured in ADMR experiments. We show that proper inclusion of the quasiparticle weight does not support an interpretation of the data in terms of a (pi, pi) spin density wave ordered state, in agreement with the lack of direct evidence for such order. We show that a simple model of Fermi surface reconfiguring across a van Hove point captures many of the striking differences seen between p = 0.21 and p = 0.24. We comment on why such a model may be appropriate for interpreting the ADMR data, despite having a large Fermi surface at p = 0.21, seemingly in contradiction with other evidence for a small Fermi surface at that doping level.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Angle-dependent magnetoresistance in organic metals
    Blundell, SJ
    Singleton, J
    JOURNAL DE PHYSIQUE I, 1996, 6 (12): : 1837 - 1847
  • [2] Magnetic breakdown and angle-dependent magnetoresistance oscillations
    Blundell, Stephen J.
    Nowojewski, Andrzej
    Goddard, Paul A.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (11) : S134 - S137
  • [3] Angle-dependent magnetoresistance in the weakly incoherent interlayer transport regime in a layered organic conductor
    Kartsovnik, MV
    Andres, D
    Simonov, SV
    Biberacher, W
    Sheikin, I
    Kushch, ND
    Müller, H
    PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [4] Angle-dependent magnetoresistance oscillation in the layered perovskite Sr2RuO4
    Ohmichi, E
    Adachi, H
    Mori, Y
    Maeno, Y
    Ishiguro, T
    Oguchi, T
    PHYSICAL REVIEW B, 1999, 59 (11): : 7263 - 7265
  • [5] Fermi surface shape and angle-dependent magnetoresistance oscillations
    Nam, MS
    Blundell, SJ
    Ardavan, A
    Symington, JA
    Singleton, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (10) : 2271 - 2279
  • [6] Angle-dependent magnetoresistance oscillations due to magnetic breakdown orbits
    Bangura, A. F.
    Goddard, P. A.
    Singleton, J.
    Tozer, S. W.
    Coldea, A. I.
    Ardavan, A.
    McDonald, R. D.
    Blundell, S. J.
    Schlueter, J. A.
    PHYSICAL REVIEW B, 2007, 76 (05):
  • [7] Angle-Dependent Absorption of Sound on Porous Materials
    Cucharero, Jose
    Hanninen, Tuomas
    Lokki, Tapio
    ACOUSTICS, 2020, 2 (04): : 753 - 765
  • [8] Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry
    Prentice, Joseph C. A.
    Coldea, Amalia I.
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [9] Spin-Spin Interactions in Organic Magnetoresistance Probed by Angle-Dependent Measurements
    Wagemans, W.
    Schellekens, A. J.
    Kemper, M.
    Bloom, F. L.
    Bobbert, P. A.
    Koopmans, B.
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [10] Strongly angle-dependent magnetoresistance in Weyl semimetals with long-range disorder
    Behrends, Jan
    Bardarson, Jens H.
    PHYSICAL REVIEW B, 2017, 96 (06)