Learning to Cooperate: Decision Fusion Method for Few-Shot Remote-Sensing Scene Classification

被引:30
|
作者
Xing, Lei [1 ]
Shao, Shuai [2 ]
Ma, Yuteng [1 ,3 ]
Wang, Yanjiang [2 ]
Liu, Weifeng [2 ]
Liu, Baodi [2 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
[3] First Inst Oceanog, Minist Nat Resources, Qingdao 266061, Peoples R China
关键词
Feature extraction; Remote sensing; Image analysis; Task analysis; Data models; Data mining; Training; Decision fusion; few-shot learning; remote-sensing scene classification;
D O I
10.1109/LGRS.2022.3157320
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, remote-sensing scene classification has become an essential primary research topic. Nowadays, scholars have proposed various few-shot remote-sensing scene classification methods to achieve superior performance with few labeled data. Most of the prior work utilized a meta-learning strategy, which suffered from too little data affecting performance. In this letter, we apply the pre-trained feature extractor for image embedding. Meanwhile, because of the negative transfer problem caused by the inadaptability of the pre-trained feature extractor to remote-sensing data, we propose to exploit two pre-trained models to classify the remote-sensing scene, respectively. Then we fuse the decision to obtain the final classification category. We design a decision attention module to automatically update combination weights for each decision. It comprehensively considers the contribution of various decisions and further improves the discrimination of features. We conduct comprehensive experiments to validate the method and achieve state-of-the-art performance on two benchmark remote-sensing scene datasets, namely NWPU-RESISC45 and UC Merced.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Few-Shot Learning For Remote Sensing Scene Classification
    Alajaji, Dalal
    Alhichri, Haikel S.
    Ammour, Nassim
    Alajlan, Naif
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 81 - 84
  • [2] MMML: Multimanifold Metric Learning for Few-Shot Remote-Sensing Image Scene Classification
    Chen, Xiliang
    Zhu, Guobin
    Wei, Jiaxin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Dictionary Learning for Few-Shot Remote Sensing Scene Classification
    Ma, Yuteng
    Meng, Junmin
    Liu, Baodi
    Sun, Lina
    Zhang, Hao
    Ren, Peng
    REMOTE SENSING, 2023, 15 (03)
  • [4] A class distribution learning method for few-shot remote sensing scene classification
    Zhao, Ming
    Liu, Yang
    REMOTE SENSING LETTERS, 2024, 15 (05) : 558 - 569
  • [5] Subspace prototype learning for few-Shot remote sensing scene classification
    Wang, Wuli
    Xing, Lei
    Ren, Peng
    Jiang, Yumeng
    Wang, Ge
    Liu, Baodi
    SIGNAL PROCESSING, 2023, 208
  • [6] Personalized Multiparty Few-Shot Learning for Remote Sensing Scene Classification
    Wang, Shanfeng
    Li, Jianzhao
    Liu, Zaitian
    Gong, Maoguo
    Zhang, Yourun
    Zhao, Yue
    Deng, Boya
    Zhou, Yu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [7] Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification
    Deng, Jianan
    Wang, Qianli
    Liu, Nanqing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [8] A Few-Shot Semi-Supervised Learning Method for Remote Sensing Image Scene Classification
    Zhu, Yuxuan
    Li, Erzhu
    Su, Zhigang
    Liu, Wei
    Samat, Alim
    Liu, Yu
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2024, 90 (02): : 121 - 126
  • [9] Class Centralized Dictionary Learning for Few-Shot Remote Sensing Scene Classification
    Wei, Lei
    Xing, Lei
    Zhao, Lifei
    Liu, Baodi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [10] Class Shared Dictionary Learning for Few-Shot Remote Sensing Scene Classification
    Xing, Lei
    Zhao, Lifei
    Cao, Weijia
    Ge, Xinmin
    Liu, Weifeng
    Liu, Baodi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19