Family of solvable generalized random-matrix ensembles with unitary symmetry

被引:18
|
作者
Muttalib, KA
Klauder, JR
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 05期
关键词
D O I
10.1103/PhysRevE.71.055101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct a very general family of characteristic functions describing random matrix ensembles (RME) having a global unitary invariance, and containing an arbitrary, one-variable probability measure, which we characterize by a "spread function." Various choices of the spread function lead to a variety of possible generalized RMEs, which show deviations from the well-known Gaussian RME originally proposed by Wigner. We obtain the correlation functions of such generalized ensembles exactly and show examples of how particular choices of the spread function can describe ensembles with arbitrary eigenvalue densities as well as critical ensembles with multifractality.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Ergodicity of unitary random-matrix ensembles
    Pluhar, Z
    Weidenmüller, HA
    ANNALS OF PHYSICS, 2000, 282 (02) : 247 - 269
  • [2] Family of generalized random matrix ensembles
    Bertuola, A.C.
    Bohigas, O.
    Pato, M.P.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (6 2): : 1 - 065102
  • [3] Family of generalized random matrix ensembles
    Bertuola, AC
    Bohigas, O
    Pato, MP
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [4] ERGODIC PROPERTIES OF RANDOM-MATRIX ENSEMBLES
    PANDEY, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 591 - 591
  • [5] THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES
    FORRESTER, PJ
    NUCLEAR PHYSICS B, 1993, 402 (03) : 709 - 728
  • [6] REAL SYMMETRICAL RANDOM-MATRIX ENSEMBLES OF HAMILTONIANS WITH PARTIAL SYMMETRY-BREAKING
    LEITNER, DM
    PHYSICAL REVIEW E, 1993, 48 (04): : 2536 - 2546
  • [7] Ergodicity of random-matrix theories:: The unitary case
    Pluhar, Z
    Weidenmüller, HA
    PHYSICAL REVIEW LETTERS, 2000, 84 (13) : 2833 - 2836
  • [8] LEVEL SPACING DISTRIBUTIONS OF RANDOM-MATRIX ENSEMBLES
    SHIROISHI, M
    NAGAO, T
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (07) : 2248 - 2259
  • [9] SPECTRAL STATISTICS IN SEMICLASSICAL RANDOM-MATRIX ENSEMBLES
    FEINGOLD, M
    LEITNER, DM
    WILKINSON, M
    PHYSICAL REVIEW LETTERS, 1991, 66 (08) : 986 - 989
  • [10] The supersymmetric technique for random-matrix ensembles with zero eigenvalues
    Ivanov, DA
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) : 126 - 153