Scalable self-assembly interfacial engineering for high-temperature dielectric energy storage

被引:10
|
作者
Wu, Chao [1 ]
LaChance, Anna Marie [2 ,3 ]
Baferani, Mohamadreza Arab [1 ,4 ]
Shen, Kuangyu [2 ,3 ]
Li, Zongze [1 ,4 ]
Hou, Zaili [2 ,3 ]
Wang, Ningzhen [1 ]
Wang, Yifei [1 ]
Sun, Luyi [2 ,3 ]
Cao, Yang [1 ,4 ]
机构
[1] Univ Connecticut, Elect Insulat Res Ctr, Inst Mat Sci, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[4] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
ELECTRICAL-CONDUCTION; FLAME-RETARDANT; COTTON FABRICS; POLYPROPYLENE;
D O I
10.1016/j.isci.2022.104601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flexible polymer dielectrics which can function well at elevated temperatures continue to be significant in harsh condition energy storage. However, state-of-the-art high-temperature polymers traditionally designed with conjugated structures for better thermal stability have compromised bandgaps and charge injection barriers. Here, we demonstrate a self-assembled polyvinyl alcohol (PVA)/montmorillonite (MMT) coating to impede charge carriers injecting into the polyimide (PI) polymer film. The anisotropic conductivity of the 2D nanolayered coating further dissipates the energy of charges through tortuous injection pathways. With the coating, high field pre-breakdown conduction measurement and space-charge profiling of PI films reveal a clear shifting of the dominant mode of conduction from the bulk-limited hopping to Schottky-injection limited conduction. The coating thus imparts PI films with a significantly suppressed electrical conduction (similar to 10x), and substantially improved discharge efficiency (7x) and energy density (2.7x) at 150 degrees C. The facile and scalable flow-induced fabrication unleash enormous applications for harsh condition electrification.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings
    Chen, Jianxiong
    Ren, Fuhao
    Yin, Ningning
    Mao, Jie
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [2] Bio-inspired PEI/BNNS composite film via hydrogen bond self-assembly for efficiently enhancing high-temperature dielectric energy storage
    Ba, Zhaotian
    Ma, Lili
    Liu, Hui
    Li, Cui
    Chen, Xuecheng
    Wen, Xin
    Song, Pingan
    Lei, Qingquan
    COMPOSITES COMMUNICATIONS, 2025, 54
  • [3] High-Temperature Dielectric Materials for Electrical Energy Storage
    Li, Qi
    Yao, Fang-Zhou
    Liu, Yang
    Zhang, Guangzu
    Wang, Hong
    Wang, Qing
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 48, 2018, 48 : 219 - 243
  • [4] Dielectric polymers for high-temperature capacitive energy storage
    Li, He
    Zhou, Yao
    Liu, Yang
    Li, Li
    Liu, Yi
    Wang, Qing
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (11) : 6369 - 6400
  • [5] Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage
    Ren, Weibin
    Yang, Minzheng
    Zhou, Le
    Fan, Youjun
    He, Shan
    Pan, Jiayu
    Tang, Tongxiang
    Xiao, Yao
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2022, 34 (47)
  • [6] Crosslinked dielectric materials for high-temperature capacitive energy storage
    Tang, Yadong
    Xu, Wenhan
    Niu, Sen
    Zhang, Zhicheng
    Zhang, Yunhe
    Jiang, Zhenhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (16) : 10000 - 10011
  • [7] Interfacial Engineering Using Covalent Organic Frameworks in Polymer Composites for High-Temperature Electrostatic Energy Storage
    Xie, Zongliang
    Le, Khoi
    Li, He
    Pang, Xi
    Xu, Tianlei
    Altoe, Virginia
    Klivansky, Liana M.
    Wang, Yunfei
    Huang, Zhiyuan
    Shelton, Steve W.
    Gu, Xiaodan
    Liu, Peng
    Peng, Zongren
    Liu, Yi
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [8] Complexities for High-Temperature Two-Handed Tile Self-assembly
    Schweller, Robert
    Winslow, Andrew
    Wylie, Tim
    DNA COMPUTING AND MOLECULAR PROGRAMMING, 2017, 10467 : 98 - 109
  • [9] Engineering Poly(phthalazinone ether sulfone) Dielectric Films for Stable High-Temperature Capacitive Energy Storage
    Gu, Chengwen
    Sun, Fanchen
    Wang, Qitong
    Li, Jiahui
    Zhao, Yi
    Zhang, Yunhe
    Zhang, Shouhai
    Jian, Xigao
    Weng, Zhihuan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (51) : 22131 - 22140
  • [10] High-temperature dielectric polymer composite for high power energy storage applications
    Yu, Xiangyan
    Yan, Haixue
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (08) : 2425 - 2426