Role of the target organ in determining susceptibility to experimental autoimmune myasthenia gravis

被引:20
|
作者
Hoedemaekers, A
Bessereau, JL
Graus, Y
Guyon, T
Changeux, JP
Berrih-Aknin, S
Vriesman, PV
De Baets, MH
机构
[1] Maastricht Univ, Dept Neurol, NL-6202 AZ Maastricht, Netherlands
[2] Univ Limburg, Dept Immunol, NL-6200 MD Maastricht, Netherlands
[3] Inst Pasteur, CNRS, UAD 1284, Unite Neurobiol Mol, F-75724 Paris, France
[4] Netherlands Canc Inst, Div Immunol, NL-1066 CX Amsterdam, Netherlands
[5] Hop Marie Lannelongue, CNRS, URA 1159, F-92350 Le Plessis Robinson, France
关键词
experimental autoimmune myasthenia gravis; acetylcholine receptor; autoimmunity;
D O I
10.1016/S0165-5728(98)00126-X
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Injection of anti-AChR antibodies in passive transfer experimental autoimmune myasthenia gravis (EAMG) results in increased degradation of acetylcholine receptor (AChR) and increased synthesis of AChR alpha-subunit mRNA. Passive transfer of anti-Main Immunogenic Region (MIR) mAb 35 in aged rats does not induce clinical signs of disease nor AChR loss. The expression of the AChR subunit genes was analyzed in susceptible and resistant rats. In aged EAMG resistant rats, no increase in the amount of AChR alpha-subunit mRNA was measured. In vivo AChR degradation experiments did not show any increase in AChR degradation rates in aged resistant rats, in contrast to young susceptible rats. Taken together, these data demonstrate that resistance of the AChR protein to antibody-mediated degradation is the primary mechanism that accounts for the resistance to passive transfer EAMG in aged rats. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条
  • [1] The role of complement in experimental autoimmune myasthenia gravis
    Kusner, Linda L.
    Kaminski, Henry J.
    MYASTHENIA GRAVIS AND RELATED DISORDERS I, 2012, 1274 : 127 - 132
  • [2] Role for interferon-γ in rat strains with different susceptibility to experimental autoimmune myasthenia gravis
    Wang, HB
    Shi, FD
    Li, HL
    van der Meide, PH
    Ljunggren, HG
    Link, H
    CLINICAL IMMUNOLOGY, 2000, 95 (02) : 156 - 162
  • [3] Cellular mechanisms of target antigen attack in experimental autoimmune myasthenia gravis
    Poussin, MA
    Christadoss, P
    MYASTHENIA GRAVIS: DISEASE MECHANISM AND IMMUNOINTERVENTION, 2000, : 58 - 72
  • [4] Gene expression profile of experimental autoimmune myasthenia gravis in passive induction experimental autoimmune myasthenia gravis
    Kaminski, HJ
    Hughes, B
    Porter, J
    Merriam, A
    Gong, B
    Richmonds, C
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46
  • [5] Role of IFN-γ in passive experimental autoimmune myasthenia gravis
    Brown, Paul M.
    Wall, Katherine A.
    JOURNAL OF IMMUNOLOGY, 2009, 182
  • [6] ROLE OF THE MACROPHAGE IN THE PATHOGENESIS OF EXPERIMENTAL AUTOIMMUNE MYASTHENIA-GRAVIS
    KINOSHITA, I
    NAKAMURA, T
    SATOH, A
    MATSUO, H
    SETO, M
    TOMITA, I
    TSUJIHATA, M
    NAGATAKI, S
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 1988, 87 (01) : 49 - 59
  • [7] EXPERIMENTAL AUTOIMMUNE MYASTHENIA-GRAVIS
    DEBAETS, MH
    VERSCHUUREN, J
    VRIESMAN, PJCV
    MONOGRAPHS IN ALLERGY, 1988, 25 : 1 - 11
  • [8] EXPERIMENTAL AUTOIMMUNE MYASTHENIA-GRAVIS
    LINDSTROM, J
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1980, 43 (07): : 568 - 576
  • [9] THE ROLE OF MAJOR HISTOCOMPATIBILITY COMPLEX GENES IN MYASTHENIA-GRAVIS AND EXPERIMENTAL AUTOIMMUNE MYASTHENIA-GRAVIS PATHOGENESIS
    KAUL, R
    SHENOY, M
    CHRISTADOSS, P
    ADVANCES IN NEUROIMMUNOLOGY, 1994, 4 (04): : 387 - 402
  • [10] Target specific siRNA-conjugate therapy for experimental autoimmune myasthenia gravis
    Huda, Ruksana
    JOURNAL OF IMMUNOLOGY, 2016, 196