Attention Patterns Detection using Brain Computer Interfaces

被引:1
|
作者
Hamza-Lup, Felix G. [1 ]
Suri, Aditya [2 ]
Iacob, Ionut E. [2 ]
Goldbach, Ioana R. [3 ]
Rasheed, Lateef [2 ]
Borza, Paul N. [4 ]
机构
[1] Georgia Southern Univ, Savannah, GA 31419 USA
[2] Georgia Southern Univ, Statesboro, GA USA
[3] Valahia Univ Targoviste, Targoviste, DB, Romania
[4] Transilvania Univ Brasov, Brasov Bv, Romania
关键词
Emotion Identification; Brain Computer Interface; Recurrent Neural Networks; Human-Computer Interaction;
D O I
10.1145/3374135.3385322
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The human brain provides a range of functions such as expressing emotions, controlling the rate of breathing, etc., and its study has attracted the interest of scientists for many years. As machine learning models become more sophisticated, and biometric data becomes more readily available through new noninvasive technologies, it becomes increasingly possible to gain access to interesting biometric data that could revolutionize Human-Computer Interaction. In this research, we propose a method to assess and quantify human attention levels and their effects on learning. In our study, we employ a brain computer interface (BCI) capable of detecting brain wave activity and displaying the corresponding electroencephalograms (EEG). We train recurrent neural networks (RNNS) to identify the type of activity an individual is performing.
引用
收藏
页码:303 / 304
页数:2
相关论文
共 50 条
  • [1] Assessing Internal and External Attention in AR using Brain Computer Interfaces: A Pilot Study
    Kosmyna, Nataliya
    Wu, Qiuxuan
    Hu, Chi-Yun
    Wang, Yujie
    Scheirer, Cassandra
    Maes, Pattie
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2021,
  • [2] Toward high performance, weakly invasive Brain Computer Interfaces using selective visual attention
    Rotermund, D.
    Ernst, U. A.
    Mandon, S.
    Taylor, K.
    Smiyukha, Y.
    Kreiter, A. K.
    Pawelzik, K.
    PERCEPTION, 2013, 42 : 219 - 219
  • [3] Toward High Performance, Weakly Invasive Brain Computer Interfaces Using Selective Visual Attention
    Rotermund, David
    Ernst, Udo A.
    Mandon, Sunita
    Taylor, Katja
    Smiyukha, Yulia
    Kreiter, Andreas K.
    Pawelzik, Klaus R.
    JOURNAL OF NEUROSCIENCE, 2013, 33 (14): : 6001 - 6011
  • [4] Detection of Cognitive State for Brain-Computer Interfaces
    Akhanda, Md. Abu Baker Siddique
    Islam, Shaon Md. Foorkanul
    Rahman, Md. Mostafizur
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT), 2013,
  • [5] Covert attention allows for continuous control of brain-computer interfaces
    Bahramisharif, Ali
    van Gerven, Marcel
    Heskes, Tom
    Jensen, Ole
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2010, 31 (08) : 1501 - 1508
  • [6] Designing Brain-Computer Interfaces for Attention-Aware Systems
    Peck, Evan M.
    Carlin, Emily
    Jacob, Robert
    COMPUTER, 2015, 48 (10) : 34 - +
  • [7] Human attention detection system using deep learning and brain–computer interface
    Nair S.A.L.
    Megalingam R.K.
    Neural Computing and Applications, 2024, 36 (18) : 10927 - 10940
  • [8] Use of ANNs as classifiers for selective attention brain-computer interfaces
    Angel Lopez, Miguel
    Pomares, Hector
    Damas, Miguel
    Madrid, Eduardo
    Prieto, Alberto
    Pelayo, Francisco
    de la Plaza Hernandez, Eva Maria
    COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 956 - +
  • [9] Improving Attention and Focus Using Brain-Computer Interfaces and Cog-Car Games with brain signals processing
    Moghaddas, Zohreh
    Asheri, Babak
    Mohamadi, Malihe
    Rafei, Ali
    Farahani, Farima
    Gholizadeh, Mahla
    Samiei, Danial Saber
    Menhaj, Mohammad Bagher
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [10] Detection of fixation points using a small visual landmark for brain-computer interfaces
    Zhou, Xiaoyu
    Xu, Minpeng
    Xiao, Xiaolin
    Wang, Yijun
    Jung, Tzyy-Ping
    Ming, Dong
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)