Quotients on the Sato Grassmannian and the moduli of vector bundles

被引:0
|
作者
Casimiro, A. C. [1 ]
Porras, J. M. Munoz [2 ,3 ]
Martin, F. J. Plaza [2 ,3 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-1200 Lisbon, Portugal
[2] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[3] Univ Salamanca, IUFFyM, E-37008 Salamanca, Spain
关键词
D O I
10.1088/1751-8113/41/19/194004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that there exists a geometric quotient of the subscheme of stable points of Gr(C((z))(circle plus r)) under the action of S1( r, C). The consequences in terms of vector bundles on an algebraic curve are studied.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stability on the Sato Grassmannian.: Applications to the moduli of vector bundles
    Casimiro, A. C.
    Porras, J. M. Munoz
    Martin, F. J. Plaza
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (03) : 402 - 421
  • [2] Vector fields on the Sato Grassmannian
    Martín, FJP
    COLLECTANEA MATHEMATICA, 2005, 56 (03) : 265 - 274
  • [3] INVOLUTIONS ON THE AFFINE GRASSMANNIAN AND MODULI SPACES OF PRINCIPAL BUNDLES
    Henderson, Anthony
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2018, 13 (01): : 43 - 97
  • [4] QUOTIENTS OF DOUBLE VECTOR BUNDLES AND MULTIGRADED BUNDLES
    Meinrenken, Eckhard
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (02): : 307 - 329
  • [5] ON MODULI OF VECTOR-BUNDLES
    KOBAYASHI, S
    LECTURE NOTES IN MATHEMATICS, 1990, 1422 : 45 - 57
  • [6] The moduli of reducible vector bundles
    He, YH
    Ovrut, BA
    Reinbacher, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (03):
  • [7] Moduli of toric vector bundles
    Payne, Sam
    COMPOSITIO MATHEMATICA, 2008, 144 (05) : 1199 - 1213
  • [8] MONADS AND MODULI OF VECTOR BUNDLES
    BARTH, W
    HULEK, K
    MANUSCRIPTA MATHEMATICA, 1978, 25 (04) : 323 - 347
  • [9] Open quotients of trivial vector bundles
    Resende, Pedro
    Santos, Joao Paulo
    TOPOLOGY AND ITS APPLICATIONS, 2017, 224 : 19 - 47
  • [10] The vector k-constrained KP hierarchy and Sato's Grassmannian
    vandeLeur, J
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (01) : 83 - 96