System efficiency for two-step metal oxide solar thermochemical hydrogen production - Part 2: Impact of gas heat recuperation and separation temperatures

被引:34
|
作者
Ehrhart, Brian D. [1 ]
Muhich, Christopher L. [1 ]
Al-Shankiti, Ibraheam [1 ,2 ]
Weimer, Alan W. [1 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA
[2] KAUST, Saudi Basic Ind Corp SABIC, Corp Res & Innovat Ctr CRI, Thuwal, Saudi Arabia
关键词
Solar; Thermochemical; Hydrogen; Efficiency; Heat recuperation; Gas separation; OXYGEN SEPARATION; EXCHANGER; CYCLES; CERIA; MODEL;
D O I
10.1016/j.ijhydene.2016.07.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O-2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19894 / 19903
页数:10
相关论文
共 50 条
  • [1] System efficiency for two-step metal oxide solar thermochemical hydrogen production - Part 1: Thermodynamic model and impact of oxidation kinetics
    Ehrhart, Brian D.
    Muhich, Christopher L.
    Al-Shankiti, Ibraheam
    Weimer, Alan W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) : 19881 - 19893
  • [2] System efficiency for two-step metal oxide solar thermochemical hydrogen production - Part 3: Various methods for achieving low oxygen partial pressures in the reduction reaction
    Ehrhart, Brian D.
    Muhich, Christopher L.
    Al-Shankiti, Ibraheam
    Weimer, Alan W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) : 19904 - 19914
  • [3] Hydrogen Production by Two-Step Water-Splitting Thermochemical Cycle Based on Metal Oxide Redox System
    Zhu Xing
    Wang Hua
    Wei Yonggang
    Li Kongzhai
    Yan Dongxia
    PROGRESS IN CHEMISTRY, 2010, 22 (05) : 1010 - 1020
  • [4] Maximizing efficiency in two-step solar-thermochemical fuel production
    Ermanoski, I.
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, SOLARPACES 2014, 2015, 69 : 1731 - 1740
  • [5] Operational strategy of a two-step thermochemical process for solar hydrogen production
    Roeb, Martin
    Neises, Martina
    Saeck, Jan-Peter
    Rietbrock, Peter
    Monnerie, Nathalie
    Dersch, Juergen
    Schmitz, Mark
    Sattler, Christian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (10) : 4537 - 4545
  • [6] Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide - A review
    Mao, Yanpeng
    Gao, Yibo
    Dong, Wei
    Wu, Han
    Song, Zhanlong
    Zhao, Xiqiang
    Sun, Jing
    Wang, Wenlong
    APPLIED ENERGY, 2020, 267 (267)
  • [7] Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production
    Charvin, Patrice
    Abanades, Stephane
    Flamant, Gilles
    Lemort, Florent
    ENERGY, 2007, 32 (07) : 1124 - 1133
  • [8] Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites
    Fresno, Fernando
    Fernandez-Saavedra, Rocio
    Belen Gomez-Mancebo, M.
    Vidal, Alfonso
    Sanchez, Miguel
    Rucandio, M. Isabel
    Quejido, Alberto J.
    Romero, Manuel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) : 2918 - 2924
  • [9] Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery
    Lapp, J.
    Davidson, J. H.
    Lipinski, W.
    ENERGY, 2012, 37 (01) : 591 - 600
  • [10] Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles
    Fresno, Fernando
    Yoshida, Tomoaki
    Gokon, Nobuyuki
    Fernandez-Saavedra, Rocio
    Kodama, Tatsuya
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (16) : 8503 - 8510