Classical integrability in the BTZ black hole

被引:9
|
作者
David, Justin R. [1 ]
Sadhukhan, Abhishake [1 ]
机构
[1] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
来源
关键词
Integrable Equations in Physics; AdS-CFT Correspondence; Black Holes; STRING THEORY;
D O I
10.1007/JHEP08(2011)079
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Classical integrability in the BTZ black hole
    Justin R. David
    Abhishake Sadhukhan
    Journal of High Energy Physics, 2011
  • [2] Classical stability of the BTZ black hole in topologically massive gravity
    Birmingham, Danny
    Mokhtari, Susan
    Sachs, Ivo
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [3] Validity of black hole complementarity in the BTZ black hole
    Gim, Yongwan
    Kim, Wontae
    PHYSICS LETTERS B, 2018, 776 : 158 - 162
  • [4] Quantum BTZ black hole
    Emparan, Roberto
    Frassino, Antonia Micol
    Way, Benson
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
  • [5] Quantum BTZ black hole
    Roberto Emparan
    Antonia Micol Frassino
    Benson Way
    Journal of High Energy Physics, 2020
  • [6] Inside the BTZ black hole
    de Berredo-Peixoto, G.
    Katanaev, M. O.
    PHYSICAL REVIEW D, 2007, 75 (02):
  • [7] O-BTZ: Orientifolded BTZ black hole
    Loran, F.
    Sheikh-Jabbari, M. M.
    PHYSICS LETTERS B, 2010, 693 (02) : 184 - 187
  • [8] Classical and quantum equations of motion of an n-dimensional BTZ black hole
    Greenwood, Eric
    PHYSICS LETTERS B, 2016, 756 : 365 - 370
  • [9] Exact results for the BTZ black hole
    Birmingham, D
    Sachs, I
    Sen, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (06): : 833 - 857
  • [10] Bose condensation and the BTZ black hole
    Vaz, Cenalo
    Wijewardhana, L. C. R.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (05)