New inequalities of Opial type for conformable fractional integrals

被引:35
|
作者
Sarikaya, Mehmet Zeki [1 ]
Budak, Huseyin [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
Opial inequality; Holder's inequality; conformable fractional integrals;
D O I
10.3906/mat-1606-91
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some Opial-type inequalities for conformable fractional integrals are obtained using the remainder function of Taylor's theorem for conformable integrals.
引用
收藏
页码:1164 / 1173
页数:10
相关论文
共 50 条
  • [1] Some Opial Type Inequalities for Conformable Fractional Integrals
    Sarikaya, Mehmet Zeki
    Can Bilisik, Candan
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [2] Opial-type inequalities for conformable fractional integrals
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    JOURNAL OF APPLIED ANALYSIS, 2019, 25 (02) : 155 - 163
  • [3] ON NEW GRUSS TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS
    Mumcu, I
    Set, E.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 755 - 763
  • [4] Some new inequalities of the Gruss type for conformable fractional integrals
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Qi, Feng
    AIMS MATHEMATICS, 2018, 3 (04): : 575 - 583
  • [5] On generalized Milne type inequalities for new conformable fractional integrals
    Celika, Baris
    Budakb, Huseyin
    Seta, Erhan
    FILOMAT, 2024, 38 (05) : 1807 - 1823
  • [6] Ostrowski type inequalities via new fractional conformable integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Gozpinar, Abdurrahman
    Jarad, Fahd
    AIMS MATHEMATICS, 2019, 4 (06): : 1684 - 1697
  • [7] CHEBYSHEV TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS
    Set, Erhan
    Akdemir, Ahmet Ocak
    Mumcu, Ilker
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1227 - 1236
  • [8] OPIAL-TYPE INEQUALITY ABOUT CONFORMABLE FRACTIONAL INTEGRALS AND THE APPLICATION
    Qi, Yongfang
    Li, Guoping
    Wang, Xiaoyuan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (03)
  • [9] Ostrowski type inequalities involving conformable fractional integrals
    Muhammad Adil Khan
    Sumbel Begum
    Yousaf Khurshid
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2018
  • [10] Ostrowski type inequalities involving conformable fractional integrals
    Khan, Muhammad Adil
    Begum, Sumbel
    Khurshid, Yousaf
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,