On the non-uniqueness of the inverse MEG problem

被引:47
|
作者
Dassios, G [1 ]
Fokas, AS
Kariotou, F
机构
[1] Univ Patras, Dept Chem Engn, Div Appl Math, GR-26110 Patras, Greece
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1088/0266-5611/21/2/L01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has recently been shown by Fokas and coworkers that if the brain is approximated by a homogeneous sphere, magnetoencephalographic measurements determine only the moments of one of the three scalar functions specifying the electrochemically generated current in the brain. In this letter, we show that this is a generic limitation of MEG. Indeed, this indeterminancy persists in the general case that the sphere is replaced by a starlike conductor.
引用
收藏
页码:L1 / L5
页数:5
相关论文
共 50 条
  • [1] Non-uniqueness result for a hybrid inverse problem
    Bal, Guillaume
    Ren, Kui
    TOMOGRAPHY AND INVERSE TRANSPORT THEORY, 2011, 559 : 29 - +
  • [2] On the non-uniqueness of the inverse problem associated with electroencephalography
    Dassios, G.
    Hadjiloizi, D.
    INVERSE PROBLEMS, 2009, 25 (11)
  • [3] NON-UNIQUENESS OF THE SOLUTIONS OF THE INVERSE PROBLEM OF CHEMICAL-KINETICS
    SPIVAK, SI
    AKHMADISHIN, ZS
    REACTION KINETICS AND CATALYSIS LETTERS, 1979, 10 (03): : 271 - 274
  • [4] NON-UNIQUENESS IN INVERSE GRAVITY PROBLEM FOR INFINITE POLYGONAL CYLINDERS
    SMITH, RA
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (01): : 61 - 65
  • [5] Intrinsic non-uniqueness of the acoustic full waveform inverse problem
    Lyu, Chao
    Capdeville, Yann
    Al-Attar, David
    Zhao, Liang
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 226 (02) : 795 - 802
  • [6] UNIQUENESS AND NON-UNIQUENESS IN INVERSE RADIATIVE TRANSFER
    Stefanov, Plamen
    Tamasan, Alexandru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) : 2335 - 2344
  • [7] NON-UNIQUENESS IN A PHYSICAL PROBLEM
    MARTIN, B
    MATHEMATICAL GAZETTE, 1983, 67 (440): : 136 - 138
  • [8] Uniqueness and non-uniqueness in the non-axisymmetric direction problem
    Kaiser, R.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2012, 65 (03): : 347 - 360
  • [9] The inverse problem of heat conduction in the case of non-uniqueness: A functional identification approach
    Borukhov, Valentin Terentievich
    Zayats, Galina M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (05): : 891 - 902
  • [10] Non-uniqueness in a free boundary problem
    Bennewitz, Bjoern
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (02) : 567 - 595