Ultrafast Interfacial Electron Transfer from Graphene Quantum Dot to 2,4-Dinitrotoluene

被引:17
|
作者
Mishra, Krishna [1 ]
Das, Ayendrila [1 ]
Ghosh, Subhadip [1 ]
机构
[1] HBNI, Natl Inst Sci Educ & Res, Sch Chem Sci, Bhubaneswar 752050, Odisha, India
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 18期
关键词
SOLVATION DYNAMICS; FUNCTIONAL-GROUPS; DEEP-ULTRAVIOLET; COUMARIN DYES; IONIC LIQUID; SOLID-STATE; BAND-GAP; RELAXATION; CARBON; WATER;
D O I
10.1021/acs.jpcc.1c00453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrafast photoinduced electron transfer (PET) from a photoexcited graphene quantum dot (GQD*) to an electron-deficient molecule 2,4-dinitrotoluene (DNT) is studied in a water-methanol mixture (1:1 by volume) at different temperatures (5 degrees C-60 degrees C). The temperature-dependent study reveals that quenching of GQD emission by DNT is a complex process, where use of collisional or static quenching alone in the fitting model cannot fit the entire time regime of the kinetics. Irrespective of temperature, the collisional quenching rate obtained from the TCSPC lifetime quenching study appears at the upper limit of the bimolecular diffusion-controlled rate of the medium. The weak solubility of DNT in the polar solvents leads to GQD-DNT complex formation through hydrophobic interactions, allowing one to obtain a diffusion-free ultrafast PET timescale of the complex using a femtosecond upconversion setup. GQD-DNT complex formation is manifested by the heat change in the isothermal titration calorimetry (ITC) study upon mixing of DNT with GQD. Findings of our work would reinforce the understanding of the interfacial charge transfer process of GQD and thereby expand the promises to its real applications, especially in sensing and photovoltaics where materials with ultrafast PET are highly desirable.
引用
收藏
页码:9638 / 9645
页数:8
相关论文
共 50 条
  • [1] 2,4-DINITROTOLUENE
    MCCRONE, WC
    TSANG, SM
    ANALYTICAL CHEMISTRY, 1954, 26 (11) : 1848 - 1849
  • [2] MUTAGENICITY STUDIES ON 2,4-DINITROTOLUENE
    HODGSON, JR
    KOWALSKI, MA
    GLENNON, JP
    DACRE, JC
    LEE, CC
    MUTATION RESEARCH, 1976, 38 (06): : 387 - 387
  • [3] THERMOKINETICS OF THE NITRATION OF 2,4-DINITROTOLUENE
    KONDRIKOV, BN
    RAIKOVA, VM
    VEGERA, YS
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1991, 64 (04): : 790 - 795
  • [4] Detection of 2,4-dinitrotoluene by graphene oxide: first principles study
    Abdollahi, Hassan
    Kari, Akbar
    Samaeifar, Fatemeh
    MATERIALS RESEARCH EXPRESS, 2018, 5 (05)
  • [5] Origins of the 2,4-dinitrotoluene pathway
    Johnson, GR
    Jain, RK
    Spain, JC
    JOURNAL OF BACTERIOLOGY, 2002, 184 (15) : 4219 - 4232
  • [6] IDENTIFICATION OF BIOTRANSFORMATION PRODUCTS FROM 2,4-DINITROTOLUENE
    MCCORMICK, NG
    CORNELL, JH
    KAPLAN, AM
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1978, 35 (05) : 945 - 948
  • [7] SUBACUTE TOXICITY OF 2,4-DINITROTOLUENE AND 2,6-DINITROTOLUENE
    ELLIS, HV
    DILLEY, JV
    LEE, CC
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 1976, 37 (01) : 116 - 117
  • [8] Preperation of 2,4-Dinitrotoluene with NO2
    史鸿鑫
    高立定
    武宏科
    刘秋平
    含能材料, 2009, (01) : 14 - 18
  • [9] Photolysis of 2,4-Dinitrotoluene and 2,6-Dinitrotoluene in Seawater
    Daniel W. O’Sullivan
    Jeffrey R. Denzel
    Dianne J. Luning Prak
    Aquatic Geochemistry, 2010, 16 : 491 - 505
  • [10] Biotransformation of 2,4-dinitrotoluene under different electron acceptor conditions
    Vanderloop, SL
    Suidan, MT
    Moteleb, MA
    Maloney, SW
    WATER RESEARCH, 1999, 33 (05) : 1287 - 1295