Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design

被引:214
|
作者
Zhou, Teng [1 ,2 ]
Song, Zhen [1 ]
Sundmacher, Kai [1 ,2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Proc Syst Engn, D-39106 Magdeburg, Germany
[2] Anglia Ruskin Univ, Proc Syst Engn, D-39106 Magdeburg, Germany
关键词
Big data; Data-driven; Machine learning; Materials screening; Materials design; ARTIFICIAL NEURAL-NETWORKS; MATERIALS INFORMATICS; HETEROGENEOUS CATALYSIS; METHANE STORAGE; IONIC LIQUIDS; SOLVENTS; PREDICTION; INDEXES; CLASSIFICATION; DESCRIPTORS;
D O I
10.1016/j.eng.2019.02.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Materials development has historically been driven by human needs and desires, and this is likely to continue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will promote increasingly large demands for clean and high-efficiency energy, personalized consumer products, secure food supplies, and professional healthcare. New functional materials that are made and tailored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data generated by modern experimental and computational techniques is becoming more readily available, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and rational design of materials. In this review article, we provide a brief introduction on various ML methods and related software or tools. Main ideas and basic procedures for employing ML approaches in materials research are highlighted. We then summarize recent important applications of ML for the large-scale screening and optimal design of polymer and porous materials, catalytic materials, and energetic materials. Finally, concluding remarks and an outlook are provided. (C) 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
引用
收藏
页码:1017 / 1026
页数:10
相关论文
共 50 条
  • [1] Big data and machine learning for materials science
    Rodrigues J.F., Jr.
    Florea L.
    de Oliveira M.C.F.
    Diamond D.
    Oliveira O.N., Jr.
    Discover Materials, 1 (1):
  • [2] Machine Learning-Based Methods for Materials Inverse Design: A Review
    Liu, Yingli
    Cui, Yuting
    Zhou, Haihe
    Lei, Sheng
    Yuan, Haibin
    Shen, Tao
    Yin, Jiancheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (02): : 1463 - 1492
  • [3] Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
    Jablonka, Kevin Maik
    Ongari, Daniele
    Moosavi, Seyed Mohamad
    Smit, Berend
    CHEMICAL REVIEWS, 2020, 120 (16) : 8066 - 8129
  • [4] Survey of Machine Learning Methods for Big Data Applications
    Vinothini, A.
    Priya, S. Baghavathi
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [5] A Research on Machine Learning Methods for Big Data Processing
    Qiu, Junfei
    Sun, Youming
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT INNOVATION, 2015, 28 : 920 - 928
  • [6] Review on the New Materials Design Methods
    Babanli, M. B.
    Prima, F.
    Vermaut, P.
    Demchenko, L. D.
    Titenko, A. N.
    Huseynov, S. S.
    Hajiyev, R. J.
    Huseynov, V. M.
    13TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING - ICAFS-2018, 2019, 896 : 937 - 944
  • [7] Computational discovery of energy materials in the era of big data and machine learning: A critical review
    Lu, Ziheng
    MATERIALS REPORTS: ENERGY, 2021, 1 (03):
  • [8] A snapshot review on soft materials assembly design utilizing machine learning methods
    Martirossyan, Maya M.
    Du, Hongjin
    Dshemuchadse, Julia
    Du, Chrisy Xiyu
    MRS ADVANCES, 2024, 9 (13) : 1088 - 1101
  • [9] A Review:Applications of Machine Learning in Design-Fabrication of Functionally Graded Materials
    Wang S.
    Yang J.
    Ma S.
    Han S.
    Wang L.
    Duan G.
    Cailiao Daobao/Materials Reports, 2023, 37 (21):
  • [10] Applications of machine learning method in high-performance materials design: a review
    Yuan, Junhao
    Li, Zhen
    Yang, Yujia
    Yin, Anyi
    Li, Wenjie
    Sun, Dan
    Wang, Qing
    JOURNAL OF MATERIALS INFORMATICS, 2024, 4 (03):