Size and shape dependent melting temperature of metallic nanomaterials

被引:14
|
作者
Zhang, Xianhe [1 ,2 ]
Li, Weiguo [1 ,2 ]
Wu, Dong [1 ]
Deng, Yong [1 ]
Shao, Jiaxing [1 ]
Chen, Liming [1 ]
Fang, Daining [3 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[3] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
melting temperature; size dependent; nanomaterials; glass transition; shape dependent; GLASS-TRANSITION; COHESIVE ENERGY; THIN; PARTICLES; NANOPARTICLES; BEHAVIOR; POINT;
D O I
10.1088/1361-648X/aaf54b
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This study aims to characterize the size and shape dependent melting temperature of nanomaterials. Considering that surface atoms and interior atoms affect the melting of materials in different manners, we thus define an equivalent relationship between the contribution of surface atoms and interior atoms. Based on this definition, a criterion of melting is proposed through introducing a critical energy storage density of melting, the sum of the contribution of surface atoms and the interior atoms. According to the proposed criterion, a new theoretical model without any adjustable parameters is developed to characterize the size effect of melting temperatures of nanomaterials. The model predictions are in good agreement with the available experimental data or molecular dynamics simulations. This model uncovers the quantitative relationship between the melting temperature, size, atomic diameter and shape of nanomaterials. In addition, this model is extended to predict the size dependent glass transition temperatures of polymers. This study can help to better understand and characterize the size dependent melting temperatures of nanomaterials, as well as the size dependent glass transition temperatures of polymers.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Size and shape dependent melting temperature of metallic nanoparticles
    Qi, WH
    Wang, MP
    MATERIALS CHEMISTRY AND PHYSICS, 2004, 88 (2-3) : 280 - 284
  • [2] Size and Shape Dependent Melting Temperature and Thermal Expansivity of Metallic and Semiconductor Nanoparticles
    Patel, Ghanshyam R.
    Thakar, Nilesh A.
    Pandya, Tushar C.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [3] Size and shape dependent Debye temperature of Nanomaterials
    Arora, Neha
    Joshi, Deepika P.
    Pachauri, Uma
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (09) : 10450 - 10454
  • [4] Size and Shape Effect on Melting Temperature of Metallic Nanocrystals
    Zhang, Liqin
    Xu, Shitao
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2025, 31 (01): : 57 - 62
  • [5] The size-shape dependent Debye temperature, melting entropy and melting enthalpy theoretical models for metallic nanomaterial
    Zhang, Xianhe
    Li, Weiguo
    Wu, Dong
    Xu, Hechen
    Deng, Yong
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 297
  • [6] Size, shape, and dimension effects on the melting temperature of metallic nanocrystals
    Sheng, Hongchao
    Xiao, Beibei
    Jiang, Xiaobao
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [7] Shape and size dependent melting point temperature of nanoparticles
    Gupta, Sanjeev K.
    Talati, Mina
    Jha, Prafulla K.
    METASTABLE AND NANOSTRUCTURED MATERIALS III, 2008, 570 : 132 - +
  • [8] Shape and Size Dependent Behaviour of Melting Temperature for Nanoparticles
    Srivastava, Shivam
    Pandey, Anjani K.
    Dixit, Chandra K.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2025, 48 (01): : 123 - 127
  • [9] Size and shape dependent melting-thermodynamic properties of metallic nanoparticles
    Xie, D
    Qi, WH
    Wang, MP
    ACTA METALLURGICA SINICA, 2004, 40 (10) : 1041 - 1044
  • [10] Study of shape, size and temperature-dependent elastic properties of nanomaterials
    Goyal, Monika
    Gupta, B. R. K.
    MODERN PHYSICS LETTERS B, 2019, 33 (26):