On the average orders of the error term in the circle problem

被引:0
|
作者
Furuya, J [1 ]
机构
[1] Yamaguchi Univ, Dept Math Sci, Fac Sci, Yamaguchi, Yoshida 7538512, Japan
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2005年 / 67卷 / 3-4期
关键词
circle problem; mean value formula; omega-estimate;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a natural number n, let r(n) denote the number of ways of writing eta as a sum. of two squares, and P(x) the remainder term in the circle problem of Gauss, that is, P(x) = Sigma(x <= n), r(n) - pi x. The purpose of this paper is to study some properties of the summatory function Sigma(n <= x) P(n)(k) with an arbitrarily fixed natural number k. In particular, we consider the cases k = 2 and 3 in detail.
引用
收藏
页码:381 / 400
页数:20
相关论文
共 50 条
  • [1] On the average orders of the error term in the Dirichlet divisor problem
    Furuya, J
    JOURNAL OF NUMBER THEORY, 2005, 115 (01) : 1 - 26
  • [2] On the variance of the error term in the hyperbolic circle problem
    Cherubini, Giacomo
    Risager, Morten S.
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) : 655 - 685
  • [3] Mean values of the error term with shifted arguments in the circle problem
    Furuya, Jun
    Tanigawa, Yoshio
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (02) : 44 - 51
  • [4] The average behaviour of the error term in a new kind of the divisor problem
    Banerjee, Debika
    Minamide, Makoto
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (02) : 533 - 550
  • [5] ON INTEGRALS AND DIRICHLET SERIES OBTAINED FROM THE ERROR TERM IN THE CIRCLE PROBLEM
    Furuya, Jun
    Tanigawa, Yoshio
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 303 - 333
  • [6] The quantization error in the average consensus problem
    Carli, Ruggero
    Fagnani, Fabio
    Frasca, Paolo
    Zampieri, Sandro
    2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 447 - +
  • [7] CIRCLE ORDERS AND ANGLE ORDERS
    FISHBURN, PC
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1989, 6 (01): : 39 - 47
  • [8] LOCAL AVERAGE OF THE HYPERBOLIC CIRCLE PROBLEM FOR FUCHSIAN GROUPS
    Biro, Andras
    MATHEMATIKA, 2018, 64 (01) : 159 - 183
  • [9] INTERVAL ORDERS AND CIRCLE ORDERS
    FISHBURN, PC
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 5 (03): : 225 - 234
  • [10] On rounding error sums related to the circle problem
    Kuba, G
    ACTA MATHEMATICA HUNGARICA, 2001, 92 (04) : 325 - 332