Density functional theory of magnetic systems revisited

被引:72
|
作者
Eschrig, H
Pickett, WE
机构
[1] Inst Festkorper & Werkstofforsch Dresden EV, D-01171 Dresden, Germany
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
metals;
D O I
10.1016/S0038-1098(01)00053-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Hohenberg-Kohn theorem of density functional theory (DFT) for the case of electrons interacting with an external magnetic field (that couples to spin only) is examined in more detail than previously. An unexpected generalization is obtained: in certain cases (which include half-metallic ferromagnets and magnetic insulators), the ground state, and hence the spin density matrix, is invariant for some non-zero range of a shift in uniform magnetic field. The energy gap in an insulator ora half-metal is shown to be a ground state property of the N-electron system in magnetic DFT. Its relation to the gap in the Kohn-Sham eigenvalue spectrum is analyzed. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:123 / 127
页数:5
相关论文
共 50 条
  • [1] The density functional theory of classical fluids revisited
    Caillol, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (19): : 4189 - 4199
  • [2] Extent and limitations of density-functional theory in describing magnetic systems
    Illas, F
    Moreira, IDR
    Bofill, JM
    Filatov, M
    PHYSICAL REVIEW B, 2004, 70 (13) : 132414 - 1
  • [3] Benzdiynes revisited:: Ab initio and density functional theory
    Arulmozhiraja, S
    Sato, T
    Yabe, A
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2001, 22 (09) : 923 - 930
  • [4] Density functional for noncollinear magnetic systems
    Kleinman, L
    PHYSICAL REVIEW B, 1999, 59 (05): : 3314 - 3317
  • [5] Photochemistry of uranium(VI) revisited: A density functional theory study
    Tsushima, Satoru
    Fahmy, Karim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [6] THE FREEZING OF HARD-SPHERES - THE DENSITY FUNCTIONAL THEORY REVISITED
    BAUS, M
    COLOT, JL
    MOLECULAR PHYSICS, 1985, 55 (03) : 653 - 677
  • [7] Density functional theory of magnetic dipolar interactions
    Pellegrini, Camilla
    Mueller, Tristan
    Dewhurst, John K.
    Sharma, Sangeeta
    Sanna, Antonio
    Gross, Eberhard K. U.
    PHYSICAL REVIEW B, 2020, 101 (14)
  • [8] Density functional theory of magnetic dipolar interactions
    Pellegrini, Camilla
    Müller, Tristan
    Dewhurst, John K.
    Sharma, Sangeeta
    Sanna, Antonio
    Gross, Eberhard K.U.
    1600, American Physical Society (101):
  • [9] Magnetic anisotropy in density-functional theory
    Jansen, HJF
    PHYSICAL REVIEW B, 1999, 59 (07) : 4699 - 4707
  • [10] Covariant density functional theory for magnetic rotation
    Peng, J.
    Meng, J.
    Ring, P.
    Zhang, S. Q.
    PHYSICAL REVIEW C, 2008, 78 (02):