End-to-End Time-Lapse Video Synthesis from a Single Outdoor Image

被引:24
|
作者
Nam, Seonghyeon [1 ]
Ma, Chongyang [2 ]
Chai, Menglei [2 ]
Brendel, William [2 ]
Xu, Ning [3 ]
Kim, Seon Joo [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
[2] Snap Inc, Santa Monica, CA USA
[3] Amazon Go, Seattle, WA USA
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR.2019.00150
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-lapse videos usually contain visually appealing content but are often difficult and costly to create. In this paper, we present an end-to-end solution to synthesize a time-lapse video from a single outdoor image using deep neural networks. Our key idea is to train a conditional generative adversarial network based on existing datasets of time-lapse videos and image sequences. We propose a multi-frame joint conditional generation framework to effectively learn the correlation between the illumination change of an outdoor scene and the time of the day. We further present a multi-domain training scheme for robust training of our generative models from two datasets with different distributions and missing timestamp labels. Compared to alternative time-lapse video synthesis algorithms, our method uses the timestamp as the control variable and does not require a reference video to guide the synthesis of the final output. We conduct ablation studies to validate our algorithm and compare with state-of-the-art techniques both qualitatively and quantitatively.
引用
收藏
页码:1409 / 1418
页数:10
相关论文
共 50 条
  • [1] End-to-end deep learning for recognition of ploidy status using time-lapse videos
    Lee, Chun-, I
    Su, Yan-Ru
    Chen, Chien-Hong
    Chang, T. Arthur
    Kuo, Esther En-Shu
    Zheng, Wei-Lin
    Hsieh, Wen-Ting
    Huang, Chun-Chia
    Lee, Maw-Sheng
    Liu, Mark
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2021, 38 (07) : 1655 - 1663
  • [2] End-to-end deep learning for recognition of ploidy status using time-lapse videos
    Chun-I Lee
    Yan-Ru Su
    Chien-Hong Chen
    T. Arthur Chang
    Esther En-Shu Kuo
    Wei-Lin Zheng
    Wen-Ting Hsieh
    Chun-Chia Huang
    Maw-Sheng Lee
    Mark Liu
    Journal of Assisted Reproduction and Genetics, 2021, 38 : 1655 - 1663
  • [3] End-to-end deep learning for recognition of ploidy status using time-lapse videos
    Lee, C. I.
    Su, Y. R.
    Chen, C. H.
    Chang, T. A.
    Kuo, E. E. S.
    Hsieh, W. T.
    Huang, C. C.
    Lee, M. S.
    Liu, M.
    HUMAN REPRODUCTION, 2021, 36 : 9 - 9
  • [4] End-to-end deep learning system for recognition of euploid and aneuploid embryos using time-lapse videos
    Paya Bosch, E.
    Bori, L.
    Valera, M. A.
    Colomer, A.
    Naranjo, V.
    Meseguer, M.
    HUMAN REPRODUCTION, 2022, 37 : I103 - I103
  • [5] Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
    Bain, Max
    Nagrani, Arsha
    Varol, Gul
    Zisserman, Andrew
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1708 - 1718
  • [6] Basis image decomposition of outdoor time-lapse videos
    Rui Zhang
    Fan Zhong
    Lili Lin
    Guanyu Xing
    Qunsheng Peng
    Xueying Qin
    The Visual Computer, 2013, 29 : 1197 - 1210
  • [7] Basis image decomposition of outdoor time-lapse videos
    Zhang, Rui
    Zhong, Fan
    Lin, Lili
    Xing, Guanyu
    Peng, Qunsheng
    Qin, Xueying
    VISUAL COMPUTER, 2013, 29 (11): : 1197 - 1210
  • [8] End-to-End Adversarial Retinal Image Synthesis
    Costa, Pedro
    Galdran, Adrian
    Meyer, Maria Ines
    Niemeijer, Meindert
    Abramoff, Michael
    Mendonca, Ana Maria
    Campilho, Aurelio
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 781 - 791
  • [9] End-to-End Image Patch Quality Assessment for Image/Video With Compression Artifacts
    Tung Thanh Pham
    Xiem Van Hoang
    Nghia Trung Nguyen
    Duong Trieu Dinh
    Le Thanh Ha
    IEEE ACCESS, 2020, 8 : 215157 - 215172
  • [10] Computational time-lapse video
    Bennett, Eric P.
    McMillan, Leonard
    ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03):