ON EXTREMA OF STABLE PROCESSES

被引:37
|
作者
Kuznetsov, Alexey [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
来源
ANNALS OF PROBABILITY | 2011年 / 39卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Stable processes; supremum; Wiener-Hopf factorization; Mellin transform; functional equations; elliptic functions; double Gamma function; q-Pochhammer symbol; Clausen function; WIENER-HOPF FACTORIZATION; DOUBLE-GAMMA-FUNCTION; NO NEGATIVE JUMPS; LEVY PROCESSES; SUPREMUM; TIME; LAW;
D O I
10.1214/10-AOP577
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Wiener-Hopf factorization and the distribution of extrema for general stable processes. By connecting the Wiener-Hopf factors with a certain elliptic-like function we are able to obtain many explicit and general results, such as infinite series representations and asymptotic expansions for the density of supremum, explicit expressions for the Wiener-Hopf factors and the Mellin transform of the supremum, quasi-periodicity and functional identities for these functions, finite product representations in some special cases and identities in distribution satisfied by the supremum functional.
引用
收藏
页码:1027 / 1060
页数:34
相关论文
共 50 条