Comprehensive Cardiotoxicity Assessment of COVID-19 Treatments Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes

被引:15
|
作者
Yanagida, Shota [1 ,2 ]
Satsuka, Ayano [1 ]
Hayashi, Sayo [1 ]
Ono, Atsushi [2 ]
Kanda, Yasunari [1 ]
机构
[1] Natl Inst Hlth Sci NIHS, Div Pharmacol, Kawasaki, Kanagawa 2109501, Japan
[2] Okayama Univ, Div Pharmaceut Sci, Grad Sch Med Dent & Pharmaceut Sci, Okayama 7008530, Japan
关键词
COVID-19; hiPSC-CMs; proarrhythmia; contractility; electromechanical window; TORSADE-DE-POINTES; ELECTROMECHANICAL WINDOW; MULTIELECTRODE ARRAY; QT PROLONGATION; HYDROXYCHLOROQUINE; MODEL; SAFETY; RISK; EFFICACY; FAVIPIRAVIR;
D O I
10.1093/toxsci/kfab079
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Coronavirus disease 2019 (COVID-19) continues to spread across the globe, with numerous clinical trials underway seeking to develop and test effective COVID-19 therapies, including remdesivir. Several ongoing studies have reported hydroxychloroquine-induced cardiotoxicity, including development of torsade de pointes (TdP). Meanwhile, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are expected to serve as a tool for assessing drug-induced cardiotoxicity, such as TdP and contraction impairment. However, the cardiotoxicity of COVID-19 treatments has not been fully assessed using hiPSC-CMs. In this study, we focused on drug repurposing with various modes of actions and examined the TdP risk associated with COVID-19 treatments using field potential using multi-electrode array system and motion analysis with hiPSC-CMs. Hydroxychloroquine induced early after depolarization, while remdesivir, favipiravir, camostat, and ivermectin had little effect on field potentials. We then analyzed electromechanical window, which is defined as the difference between field potential and contraction-relaxation durations. Hydroxychloroquine decreased electromechanical window of hiPSC-CMs in a concentration-dependent manner. In contrast, other drugs had little effect. Our data suggest that hydroxychloroquine has proarrhythmic risk and other drugs have low proarrhythmic risk. Thus, hiPSC-CMs represent a useful tool for assessing the comprehensive cardiotoxicity caused by COVID-19 treatments in nonclinical settings.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条
  • [1] Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes
    Chaudhari, Umesh
    Nemade, Harshal
    Sureshkumar, Poornima
    Vinken, Mathieu
    Ates, Gamze
    Rogiers, Vera
    Hescheler, Juergen
    Hengstler, Jan Georg
    Sachinidis, Agapios
    ARCHIVES OF TOXICOLOGY, 2018, 92 (01) : 371 - 381
  • [2] Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes
    Umesh Chaudhari
    Harshal Nemade
    Poornima Sureshkumar
    Mathieu Vinken
    Gamze Ates
    Vera Rogiers
    Jürgen Hescheler
    Jan Georg Hengstler
    Agapios Sachinidis
    Archives of Toxicology, 2018, 92 : 371 - 381
  • [3] Investigating and Resolving Cardiotoxicity Induced by COVID-19 Treatments using Human Pluripotent Stem Cell-Derived Cardiomyocytes and Engineered Heart Tissues
    Xu, He
    Liu, Ge
    Gong, Jixing
    Zhang, Ying
    Gu, Shanshan
    Wan, Zhongjun
    Yang, Pengcheng
    Nie, Yage
    Wang, Yinghan
    Huang, Zhan-peng
    Luo, Guanzheng
    Chen, Zhongyan
    Zhang, Donghui
    Cao, Nan
    ADVANCED SCIENCE, 2022, 9 (30)
  • [4] Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Yiqi Gong
    Li Yang
    Jun Tang
    Jijian Zheng
    Nevin Witman
    Philipp Jakob
    Yao Tan
    Minglu Liu
    Ying Chen
    Huijing Wang
    Wei Fu
    Wei Wang
    Cardiovascular Toxicology, 2022, 22 : 141 - 151
  • [5] Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Gong, Yiqi
    Yang, Li
    Tang, Jun
    Zheng, Jijian
    Witman, Nevin
    Jakob, Philipp
    Tan, Yao
    Liu, Minglu
    Chen, Ying
    Wang, Huijing
    Fu, Wei
    Wang, Wei
    CARDIOVASCULAR TOXICOLOGY, 2022, 22 (02) : 141 - 151
  • [6] Assessment of Cardiomyocyte Contraction in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Pointon, Amy
    Harmer, Alexander R.
    Dale, Ian L.
    Abi-Gerges, Najah
    Bowes, Joanne
    Pollard, Christopher
    Garside, Helen
    TOXICOLOGICAL SCIENCES, 2015, 144 (02) : 227 - 237
  • [7] Cardiac proarrhythmic risk assessment using human-induced pluripotent stem cell-derived cardiomyocytes
    Albert, Verena
    Jahic, Mirza
    Servant, Nicole
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2023, 123
  • [8] Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes
    A. D. Podgurskaya
    M. M. Slotvitsky
    V. A. Tsvelaya
    S. R. Frolova
    S. G. Romanova
    V. A. Balashov
    K. I. Agladze
    Scientific Reports, 11
  • [9] Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes
    Podgurskaya, A. D.
    Slotvitsky, M. M.
    Tsvelaya, V. A.
    Frolova, S. R.
    Romanova, S. G.
    Balashov, V. A.
    Agladze, K. I.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Preventing Anthracycline-Induced Cardiotoxicity Using Functional Genomics and Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Lo Sardo, Valentina
    Kamp, Timothy J.
    CIRCULATION, 2022, 145 (04) : 295 - 298