UAV navigation based on adaptive fuzzy backstepping controller using visual odometry

被引:4
|
作者
Boucheloukh, Abdelghani [1 ,2 ,3 ]
Boudjema, Fares [1 ,2 ,3 ]
Abdelkrim, Nemra [1 ,2 ,3 ]
Demim, Fethi [1 ,2 ,3 ]
Yacef, Fouad [1 ,2 ,3 ]
机构
[1] Ecole Natl Polytech ENP, Lab Commande Proc, 10 Rue Freres OUDEK, Algiers 16200, Algeria
[2] Ecole Mil Polytech EMP, Lab Vehicules Autonomes Intelligents, Algiers, Algeria
[3] Ctr Dev Technol Avancees, Div Prod & Robot, Algiers, Algeria
来源
关键词
Unmanned aerial vehicles; trajectory tracking; backstepping control; fuzzy system; visual odometry; VEHICLES; VISION; REGISTRATION; SLAM;
D O I
10.1080/02286203.2021.1952386
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the 3D trajectory tracking of a quadrotor-type unmanned aerial vehicle (UAV) using a visual localization system integrated in the feedback control loop. First, adaptive stereo visual odometry (SVO) is proposed to solve the UAV localization problem. The proposed solution mainly employs adaptive iterative closest point speeded-up robust features. Second, a vision-based trajectory tracking algorithm is implemented using a backstepping controller, whose parameters are optimized using the particle swarm optimization algorithm. Finally, to avoid the limitations of visual localization (e.g. dark environment, uniform area, and dynamic scene), the visual pose is supported by the inertial pose obtained using a fuzzy adaptive Kalman filter (FAKF). Based on the number and average depth of the estimated 3D points, the FAKF algorithm adaptively tunes the extended Kalman filter parameters. The proposed algorithms are validated using simulation and experimental data. Many scenarios are considered with different trajectories. Good performance is achieved, confirming the efficiency of the proposed approach.
引用
收藏
页码:595 / 616
页数:22
相关论文
共 50 条
  • [1] Quadrotor UAV Flight Control Using Backstepping Adaptive Controller
    Zhou, Laihong
    Zhang, Bao
    2020 IEEE 6TH INTERNATIONAL CONFERENCE ON CONTROL SCIENCE AND SYSTEMS ENGINEERING (ICCSSE), 2019, : 169 - 172
  • [2] Event-Based Visual/Inertial Odometry for UAV Indoor Navigation
    Elamin, Ahmed
    El-Rabbany, Ahmed
    Jacob, Sunil
    SENSORS, 2025, 25 (01)
  • [3] Design of A Backstepping Integral Adaptive Controller for Quadrotor UAV
    Wang H.
    Zhou L.
    Zhou, Laihong (lai_h@126.com), 1600, China Ordnance Industry Corporation (42): : 1283 - 1289
  • [4] Visual Odometry and Scene Matching Integrated Navigation System in UAV
    Zhao Chunhui
    Wang Rongzhi
    Zhang Tianwu
    Pan Quan
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [5] Backstepping Fuzzy Adaptive Controller of Induction Machine
    Ezziani, N.
    Essounbouli, N.
    Hamzaoui, A.
    2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 930 - 935
  • [6] Robust adaptive filter using fuzzy logic for tightly-coupled visual inertial odometry navigation system
    Yue, Zhe
    Lian, Baowang
    Gao, Yuting
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (03): : 364 - 371
  • [7] Adaptive Fuzzy Backstepping Controller of Induction Machine
    Issaouni, S.
    Boulkroune, A.
    Chekireb, H.
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 151 - +
  • [8] Adaptive PID Controller Based on Fuzzy Micro UAV Technology
    Liu Xiaogang
    Song Guoshou
    ELECTRONIC INFORMATION AND ELECTRICAL ENGINEERING, 2012, 19 : 368 - 371
  • [9] Adaptive fuzzy controller for robot navigation
    Godjevac, J
    Steele, N
    FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 136 - 142
  • [10] Using Visual Odometry to Determine the Position of a UAV
    Pinter, Marco
    Janousek, Jiri
    Klouda, Jan
    Marcon, Petr
    IFAC PAPERSONLINE, 2024, 58 (09): : 281 - 286