A non-extensive maximum entropy based regularization method for bad conditioned inverse problems

被引:4
|
作者
Rebollo-Neira, L
Fernandez-Rubio, J
Plastino, A
机构
[1] Natl Univ La Plata, Dept Fis, RA-1900 La Plata, Argentina
[2] UPC, Escola Tecn Super, Dept Teoria Senyal & Comunicac, Barcelona 08034, Spain
关键词
D O I
10.1016/S0378-4371(98)00400-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q = 1/2 case. We show that, when the residual principle is considered as constraint, the q = 1/2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with component which col-responds to the well known regularized solution of Tikhonov. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:555 / 568
页数:14
相关论文
共 50 条
  • [1] A unified regularization theory: the maximum non-extensive entropy principle
    De Campos Velho, Haroldo F.
    Shiguemori, Elcio H.
    Ramos, Fernando M.
    Carvalho, Joao C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2006, 25 (2-3): : 307 - 330
  • [2] A unified regularization theory: The maximum non-extensive entropy principle
    Instituto Nacional de Pesquisas Espaciais , Laboratório Associado de Computação e Matemática Aplicada , São José dos Campos, SP, Brazil
    不详
    不详
    Comput. Appl. Math., 2006, 2-3 (307-330):
  • [3] Fuzzy C-Means with Non-Extensive Entropy Regularization
    Susan, Seba
    Sharawat, Puneet
    Singh, Sandeep
    Meena, Ramkesh
    Verma, Amit
    Kumar, Mukesh
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,
  • [4] On the q=1/2 non-extensive maximum entropy distribution
    Rebollo-Neira, L
    Plastino, A
    Fernandez-Rubio, J
    PHYSICA A, 1998, 258 (3-4): : 458 - 465
  • [5] On the q = 1/2 non-extensive maximum entropy distribution
    Universidad Nacional de La Plata, La Plata, Argentina
    Phys A, 3-4 (458-465):
  • [6] MAXIMUM NON-EXTENSIVE ENTROPY BLOCK BOOTSTRAP FOR NON-STATIONARY PROCESSES
    Bergamelli, Michele
    Novotny, Jan
    Urga, Giovanni
    ACTUALITE ECONOMIQUE, 2015, 91 (1-2): : 115 - 139
  • [7] Extensive limit of a non-extensive entanglement entropy
    Kalogeropoulos, Nikos
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (06): : 1 - 6
  • [8] When non-extensive entropy becomes extensive
    Tatsuaki, W
    Takeshi, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 301 (1-4) : 284 - 290
  • [9] Extensive limit of a non-extensive entanglement entropy
    Nikos Kalogeropoulos
    The European Physical Journal B, 2014, 87
  • [10] Entropy meters and the entropy of non-extensive systems
    Lieb, Elliott H.
    Yngvason, Jakob
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2167):