An automated approach for developing neural network interatomic potentials with FLAME

被引:9
|
作者
Mirhosseini, Hossein [1 ,2 ]
Tahmasbi, Hossein [3 ]
Kuchana, Sai Ram [1 ,2 ]
Ghasemi, S. Alireza [1 ,2 ]
Kuehne, Thomas D. [1 ,2 ]
机构
[1] Univ Paderborn, Chair Theoret Chem, Dynam Condensed Matter, Warburger Str 100, D-33098 Paderborn, Germany
[2] Univ Paderborn, Chair Theoret Chem, Ctr Sustainable Syst Design, Warburger Str 100, D-33098 Paderborn, Germany
[3] Leiden Univ, Gorlaeus Labs, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands
关键词
Interatomic potentials; Neural network potentials; Machine learning; TOTAL-ENERGY CALCULATIONS; THERMAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; INTERFACE; WATER; SIMULATIONS; PERFORMANCE; MECHANISM; MINIMUM; TIO2;
D O I
10.1016/j.commatsci.2021.110567
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The performance of machine learning interatomic potentials relies on the quality of the training dataset. In this work, we present an approach for generating diverse and representative training data points which initiates with ab initio calculations for bulk structures. The data generation and potential construction further proceed side-byside in a cyclic process of training the neural network and crystal structure prediction based on the developed interatomic potentials. All steps of the data generation and potential development are performed with minimal human intervention. We show the reliability of our approach by assessing the performance of neural network potentials developed for two inorganic systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Multidimensional Neural Network Interatomic Potentials for CO on NaCl(100)
    Sinha, Shreya
    Mladineo, Bruno
    Loncaric, Ivor
    Saalfrank, Peter
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (49): : 21117 - 21131
  • [2] Transfer learning for chemically accurate interatomic neural network potentials
    Zaverkin, Viktor
    Holzmueller, David
    Bonfirraro, Luca
    Kaestner, Johannes
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (07) : 5383 - 5396
  • [3] Data efficiency and extrapolation trends in neural network interatomic potentials
    Vita J.A.
    Schwalbe-Koda D.
    Machine Learning: Science and Technology, 2023, 4 (03):
  • [4] LAMMPS implementation of rapid artificial neural network derived interatomic potentials
    Dickel, D.
    Nitol, M.
    Barrett, C. D.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 196
  • [5] PANNA 2.0: Efficient neural network interatomic potentials and new architectures
    Pellegrini, Franco
    Lot, Ruggero
    Shaidu, Yusuf
    Kucukbenli, Emine
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (08):
  • [6] Synthetic pre-training for neural-network interatomic potentials
    Gardner, John L. A.
    Baker, Kathryn T.
    Deringer, Volker L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [7] An entropy-maximization approach to automated training set generation for interatomic potentials
    Karabin, Mariia
    Perez, Danny
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (09):
  • [8] Systematic approach to developing empirical interatomic potentials for III-N semiconductors
    Ito, Tomonori
    Akiyama, Toru
    Nakamura, Kohji
    Japanese Journal of Applied Physics, 2016, 55 (05):
  • [9] Systematic approach to developing empirical interatomic potentials for III-N semiconductors
    Ito, Tomonori
    Akiyama, Toru
    Nakamura, Kohji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (05)
  • [10] Neural network interatomic potentials for open surface nano-mechanics applications
    Naghdi, Amirhossein D.
    Pellegrini, Franco
    Kucukbenli, Emine
    Massa, Dario
    Dominguez-Gutierrez, F. Javier
    Kaxiras, Efthimios
    Papanikolaou, Stefanos
    ACTA MATERIALIA, 2024, 277