Aspect-Based Sentiment Analysis via Virtual Node Augmented Graph Convolutional Networks

被引:1
|
作者
Xu, Runzhong [1 ]
机构
[1] Univ Nottingham, Nottingham NG7 2RD, England
关键词
Sentiment analysis; Opinion mining; Aspect-based sentiment analysis; Graph neural network;
D O I
10.1007/978-3-031-20865-2_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-based sentiment analysis (ABSA) refers to a finegrained sentiment analysis task aimed at detecting sentiment polarity towards a given aspect. Recently, graph convolutional networks (GCN) integrated with dependency trees have achieved related appealing results in ABSA. Nevertheless, most existing models fail to preserve the information of the whole graph although global information can often significantly improve their performance. To address this problem, a novel virtual node augmented graph convolutional network (ViGCN) is proposed to further enhance the performance of GCNs in the ABSA task by adding a virtual node to the graph. The virtual node can connect to all the nodes in the graph to aggregate global information from the entire graph and then propagate it to each node. In particular, we construct edges between the virtual node and other nodes based on affective commonsense knowledge from SenticNet and the semantic-relative distances between contextual words and the aspect, effectively enhancing the collected global information towards the given aspect. Extensive experiments on three benchmark datasets illustrate that the ViGCN model can beat state-of-the-art models, proving its effectiveness.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [1] Multiple graph convolutional networks for aspect-based sentiment analysis
    Yuting Ma
    Rui Song
    Xue Gu
    Qiang Shen
    Hao Xu
    Applied Intelligence, 2023, 53 : 12985 - 12998
  • [2] Multiple graph convolutional networks for aspect-based sentiment analysis
    Ma, Yuting
    Song, Rui
    Gu, Xue
    Shen, Qiang
    Xu, Hao
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12985 - 12998
  • [3] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks
    Liang, Bin
    Su, Hang
    Gui, Lin
    Cambria, Erik
    Xu, Ruifeng
    KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [4] Aspect-gated graph convolutional networks for aspect-based sentiment analysis
    Qiang Lu
    Zhenfang Zhu
    Guangyuan Zhang
    Shiyong Kang
    Peiyu Liu
    Applied Intelligence, 2021, 51 : 4408 - 4419
  • [5] Aspect-gated graph convolutional networks for aspect-based sentiment analysis
    Lu, Qiang
    Zhu, Zhenfang
    Zhang, Guangyuan
    Kang, Shiyong
    Liu, Peiyu
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4408 - 4419
  • [6] Modelling Context with Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Zhang, Maoyuan
    Zhang, Jieqiong
    Liu, Lisha
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 194 - 200
  • [7] Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis
    Kim, Dahye
    Kim, YoungJin
    Jeong, Young-Seob
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [8] Interactive Double Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Wang, Xue
    Liu, Peiyu
    Zhu, Zhenfang
    Lu, Ran
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] Aggregated graph convolutional networks for aspect-based sentiment classification
    Zhao, Meng
    Yang, Jing
    Zhang, Jianpei
    Wang, Shenglong
    INFORMATION SCIENCES, 2022, 600 : 73 - 93
  • [10] Sentiment interaction and multi-graph perception with graph convolutional networks for aspect-based sentiment analysis
    Lu, Qiang
    Sun, Xia
    Sutcliffe, Richard
    Xing, Yaqiong
    Zhang, Hao
    KNOWLEDGE-BASED SYSTEMS, 2022, 256