SHARP GLOBAL WELL-POSEDNESS OF THE BBM EQUATION IN LP TYPE SOBOLEV SPACES

被引:13
|
作者
Wang, Ming [1 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
关键词
BBM equation; well posedness; ill posedness; L-P space; BONA-MAHONY EQUATION; LOW REGULARITY SPACES; BENJAMIN EQUATION; ILL-POSEDNESS; OPERATORS;
D O I
10.3934/dcds.2016053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global well-posedness of the BBM equation is established in H-s,H-p(R) with s >= max {0,1/p - 1/2} and 1 <= p < infinity. Moreover, the well-posedness results are shown to be sharp in the sense that the solution map is no longer C-2 from H-s,H-p(R) to C([0,T]; H-s,H-p(R)) for smaller s or p. Finally, some growth bounds of global solutions in terms of time T are proved.
引用
收藏
页码:5763 / 5788
页数:26
相关论文
共 50 条
  • [1] Sharp global well-posedness for the fractional BBM equation
    Wang, Ming
    Zhang, Zaiyun
    Mathematical Methods in the Applied Sciences, 2018, 41 (15): : 5906 - 5918
  • [2] Sharp global well-posedness for the fractional BBM equation
    Wang, Ming
    Zhang, Zaiyun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (15) : 5906 - 5918
  • [3] Sharp well-posedness results for the BBM equation
    Bona, Jerry L.
    Tzvetkov, Nikolay
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (04) : 1241 - 1252
  • [4] On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation
    Carvajal, X.
    Panthee, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 688 - 702
  • [5] WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACES
    Alexandre, R.
    Wang, Y. -G.
    Xu, C. -J.
    Yang, T.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (03) : 745 - 784
  • [6] Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces
    Chen, Dongxiang
    Wang, Yuxi
    Zhang, Zhifei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (09) : 5870 - 5893
  • [7] GLOBAL WELL-POSEDNESS AND EXPONENTIAL STABILITY FOR THE FERMION EQUATION IN WEIGHTED SOBOLEV SPACES
    Sun, Baoyan
    Wu, Kung-Chien
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2537 - 2562
  • [8] Global well-posedness for the cubic nonlinear Schrodinger equation with initial data lying in Lp-based Sobolev spaces
    Dodson, Benjamin
    Soffer, Avraham
    Spencer, Thomas
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [9] Well-posedness of the Muskat problem in subcritical Lp-Sobolev spaces
    Abels, H.
    Matioc, B-, V
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2022, 33 (02) : 224 - 266
  • [10] Well-posedness and controllability of Kawahara equation in weighted Sobolev spaces
    Capistrano-Filho, Roberto de A.
    Gomes, Milena Monique de S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 207 (207)