FAOD-Net: A Fast AOD-Net for Dehazing Single Image

被引:14
|
作者
Qian, Wen [1 ,2 ]
Zhou, Chao [1 ,2 ]
Zhang, Dengyin [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Broadband Wireless Commun & Inter, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Internet ings, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
QUALITY ASSESSMENT;
D O I
10.1155/2020/4945214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks. Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] AOD-Net: All-in-One Dehazing Network
    Li, Boyi
    Peng, Xiulian
    Wang, Zhangyang
    Xu, Jizheng
    Feng, Dan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4780 - 4788
  • [2] A Defogging Algorithm for Aerial Image With Improved AOD-Net
    Li Y.-F.
    Cui H.-Q.
    Zhu H.
    Zhang K.-B.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (06): : 1543 - 1559
  • [3] AED-Net: A Single Image Dehazing
    Hovhannisyan, Sargis A.
    Gasparyan, Hayk A.
    Agaian, Sos S.
    Ghazaryan, Art
    IEEE ACCESS, 2022, 10 : 12465 - 12474
  • [4] Vehicle detection algorithm for foggy based on improved AOD-Net
    Zhang, Liyan
    Zhao, Jianing
    Lang, Zhengang
    Fang, Liu
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (14) : 2696 - 2705
  • [5] 基于改进AOD-Net的图像去雾算法
    侯明
    梁文杰
    电子技术应用, 2024, 50 (04) : 60 - 66
  • [6] 改进AOD-Net的轻量级图像去雾算法
    张骞
    陈紫强
    姜弘岳
    赵玖龙
    实验室研究与探索, 2022, 41 (07) : 18 - 22
  • [7] Study on Vehicle Exhaust Emission Detection System Using YOLOv4 and AOD-Net Image Defogging Technology
    Chen, Shi-Huang
    Hung, Chuan-Sheng
    ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2021 & FITAT 2021), VOL 2, 2022, 278 : 263 - 273
  • [8] Aethra-net: Single image and video dehazing using autoencoder
    Juneja, Akshay
    Kumar, Vijay
    Singla, Sunil Kumar
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 94
  • [9] Gated Contiguous Memory U-Net for Single Image Dehazing
    Xiang, Lei
    Dong, Hang
    Wang, Fei
    Guo, Yu
    Ma, Kaisheng
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 117 - 127
  • [10] 基于AOD-Net改进的单幅图像去雾算法研究
    金彬峰
    黄金炜
    赵慧勐
    现代信息科技, 2023, 7 (01) : 80 - 83