Linear Context-Free Tree Languages and Inverse Homomorphisms

被引:1
|
作者
Osterholzer, Johannes [1 ]
Dietze, Toni [1 ]
Herrmann, Luisa [1 ]
机构
[1] Tech Univ Dresden, Fac Comp Sci, D-01062 Dresden, Germany
来源
LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, LATA 2016 | 2016年 / 9618卷
关键词
D O I
10.1007/978-3-319-30000-9_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. The proof is by contradiction: we encode Dyck words into a context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. However, the closure can be proved for the linear monadic context-free tree languages.
引用
收藏
页码:478 / 489
页数:12
相关论文
共 50 条
  • [1] Linear context-free tree languages and inverse homomorphisms
    Osterholzer, Johannes
    Dietze, Toni
    Herrmann, Luisa
    INFORMATION AND COMPUTATION, 2019, 269
  • [2] Restarting tree automata and linear context-free tree languages
    Stamer, Heiko
    Otto, Friedrich
    ALGEBRAIC INFORMATICS, 2007, 4728 : 275 - 289
  • [3] HOMOMORPHISMS PRESERVING DETERMINISTIC CONTEXT-FREE LANGUAGES
    Lehtinen, Tommi
    Okhotin, Alexander
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2013, 24 (07) : 1049 - 1066
  • [4] Homomorphisms Preserving Deterministic Context-Free Languages
    Lehtinen, Tommi
    Okhotin, Alexander
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2012), 2012, 7410 : 154 - 165
  • [5] Regular Approximation of Weighted Linear Context-Free Tree Languages
    Teichmann, Markus
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2017, 28 (05) : 523 - 542
  • [6] Regular Approximation of Weighted Linear Nondeleting Context-Free Tree Languages
    Teichmann, Markus
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2016, 9705 : 273 - 284
  • [7] INVERSE MONOIDS, TREES, AND CONTEXT-FREE LANGUAGES
    MARGOLIS, SW
    MEAKIN, JC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (01) : 259 - 276
  • [8] GREIBACH CONTEXT-FREE TREE-LANGUAGES
    ARNOLD, A
    LEGUY, B
    INFORMATION AND CONTROL, 1980, 46 (02): : 108 - 134
  • [9] ON THE TREE HEIGHT OF CONTEXT-FREE LANGUAGES.
    Noshita, Kohei
    Takaoka, Tadao
    Systems - Computers - Controls, 1973, 4 (03): : 23 - 29
  • [10] Fractal Automata: Recursion in Context-Free and in Deterministic and Linear Context-Free Languages
    Nagy, Benedek
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2025,