Weighted Spectral Cluster Bounds and a Sharp Multiplier Theorem for Ultraspherical Grushin Operators

被引:4
|
作者
Casarino, Valentina [1 ]
Ciatti, Paolo [2 ]
Martini, Alessio [1 ]
机构
[1] Univ Padua, Stradella San Nicola 3, I-36100 Vicenza, Italy
[2] Univ Padua, Via Marzolo 9, I-35100 Padua, Italy
关键词
LINEAR-DIFFERENTIAL EQUATIONS; KOHN LAPLACIAN; INTEGRAL-OPERATORS; ELLIPTIC-OPERATORS; SUBLAPLACIAN; SPHERE;
D O I
10.1093/imrn/rnab007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study degenerate elliptic operators of Grushin type on the d-dimensional sphere, which are singular on a k-dimensional sphere for some k < d. For these operators we prove a spectral multiplier theorem of Mihlin-Hormander type, which is optimal whenever 2k <= d, and a corresponding Bochner-Riesz summability result. The proof hinges on suitable weighted spectral cluster bounds, which in turn depend on precise estimates for ultraspherical polynomials.
引用
收藏
页码:9209 / 9274
页数:66
相关论文
共 45 条