BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION

被引:0
|
作者
Contreras, Gabriel Aguilera [1 ,2 ]
Munoz-Rivera, Jaime E. [1 ,3 ]
机构
[1] Univ Bio Bio, Dept Matemat, Concepcion, Chile
[2] Univ Concepcion, Dept Ciencias Basicas, Los Angeles, Chile
[3] Lab Nacl Comp Cient, Petropolis, RJ, Brazil
关键词
Bresse beam; transmission problem; exponential stability; localized viscoelastic dissipative mechanism; polynomial stability; STABILITY; SPECTRUM; DECAY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of localized viscoelastic dissipation for curved beams. We consider a circular beam with three components, two of them viscous with constitutive laws of Kelvin-Voigt type, one continuous and the other discontinuous. The third component is elastic without any dissipative mechanism. Our main result is that the rate of decay depends on the position of each component. More precisely, we prove that the model is exponentially stable if and only if the viscous component with discontinuous constitutive law is not in the center of the beam. We prove that when there is no exponential stability, the solution decays polynomially.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SIGNORINI'S PROBLEM FOR THE BRESSE BEAM MODEL WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Rivera, Jaime E. Munoz
    Baldez, Carlos A. Da Costa
    Cordeiro, Sebastiaeo M. S.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (17) : 1 - 24
  • [2] Stability of a Timoshenko System with Localized Kelvin-Voigt Dissipation
    Aguilera Contreras, Gabriel
    Munoz Rivera, Jaime E.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 3547 - 3563
  • [3] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1831 - 1857
  • [4] On localized Kelvin-Voigt damping
    Renardy, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (04): : 280 - 283
  • [5] THE LACK OF EXPONENTIAL STABILITY IN CERTAIN TRANSMISSION PROBLEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Alves, Margareth
    Rivera, Jaime Munoz
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (02) : 345 - 365
  • [7] STABILITY OF AN N-COMPONENT TIMOSHENKO BEAM WITH LOCALIZED KELVIN-VOIGT AND FRICTIONAL DISSIPATION
    Maryati, Tita K.
    Munoz Rivera, Jaime E.
    Rambaud, Amelie
    Vera, Octavio
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [8] Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase
    Daridon, Loic
    Licht, Christian
    Orankitjaroen, Somsak
    Pagano, Stephane
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 58 : 163 - 171
  • [9] Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation
    Gabriel Aguilera Contreras
    Jaime E. Muñoz Rivera
    Applied Mathematics & Optimization, 2021, 84 : 3547 - 3563
  • [10] Stability in Kelvin-Voigt poroelasticity
    Straughan, Brian
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02): : 357 - 366