Simulations of plasma confinement in an antihydrogen trap

被引:16
|
作者
Gomberoff, K. [1 ]
Fajans, J.
Friedman, A.
Grote, D.
Vay, J.-L.
Wurtele, J. S.
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Technion, Dept Phys, IL-32000 Haifa, Israel
基金
美国国家科学基金会; 以色列科学基金会;
关键词
D O I
10.1063/1.2778420
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration [W. Bertsche et al., AIP Conf. Proc. 796, 301 (2005)]. In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventional Malmberg- Penning trap. These multipole fields must be strong enough to confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of the axial magnetic field. Numerical simulations reported here confirm recent experimental measurements of reduced particle confinement when a quadrupole field is added to a Malmberg- Penning trap. It is shown that, for parameters relevant to various antihydrogen experiments, the use of an octupole field significantly reduces the positron losses seen with a quadrupole field. A unique method for obtaining a 3- D equilibrium of the positrons in the trap with a collisionless PIC code was developed especially for the study of the antihydrogen trap; however, it is of practical use for other traps as well. (C) 2007 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Towards antihydrogen confinement with the ALPHA antihydrogen trap
    M. C. Fujiwara
    G. Andresen
    W. Bertsche
    A. Boston
    P. D. Bowe
    C. L. Cesar
    S. Chapman
    M. Charlton
    M. Chartier
    A. Deutsch
    J. Fajans
    R. Funakoshi
    D. R. Gill
    K. Gomberoff
    J. S. Hangst
    W. N. Hardy
    R. S. Hayano
    R. Hydomako
    M. J. Jenkins
    L. V. Jørgensen
    L. Kurchaninov
    N. Madsen
    P. Nolan
    K. Olchanski
    A. Olin
    R. D. Page
    A. Povilus
    F. Robicheaux
    E. Sarid
    D. M. Silveira
    J. W. Storey
    R. I. Thompson
    D. P. van der Werf
    J. S. Wurtele
    Y. Yamazaki
    Hyperfine Interactions, 2006, 172 : 81 - 89
  • [2] Towards antihydrogen confinement with the ALPHA antihydrogen trap
    Fujiwara, M. C.
    Andresen, G.
    Bertsche, W.
    Boston, A.
    Bowe, P. D.
    Cesar, C. L.
    Chapman, S.
    Charlton, M.
    Chartier, M.
    Deutsch, A.
    Fajans, J.
    Funakoshi, R.
    Gill, D. R.
    Gomberoff, K.
    Hangst, J. S.
    Hardy, W. N.
    Hayano, R. S.
    Hydomako, R.
    Jenkins, M. J.
    Jorgensen, L. V.
    Kurchaninov, L.
    Madsen, N.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Page, R. D.
    Povilus, A.
    Robicheaux, F.
    Sarid, E.
    Silveira, D. M.
    Storey, J. W.
    Thompson, R. I.
    Van der Werf, D. P.
    Wurtele, J. S.
    Yamazaki, Y.
    HYPERFINE INTERACTIONS, 2006, 172 (1-3): : 81 - 89
  • [3] A magnetic trap for antihydrogen confinement
    Bertsche, W.
    Boston, A.
    Bowe, P. D.
    Cesar, C. L.
    Chapman, S.
    Charlton, M.
    Chartier, M.
    Deutsch, A.
    Fajans, J.
    Fujiwara, M. C.
    Funakoshi, R.
    Gomberoff, K.
    Hangst, J. S.
    Hayano, R. S.
    Jenkins, M. J.
    Jorgensen, L. V.
    Ko, P.
    Madsen, N.
    Nolan, P.
    Page, R. D.
    Posada, L. G. C.
    Povilus, A.
    Sarid, E.
    Silveira, D. M.
    van der Werf, D. P.
    Yamazaki, Y.
    Parker, B.
    Escallier, J.
    Ghosh, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 566 (02): : 746 - 756
  • [4] Antiproton confinement in a penning-ioffe trap for antihydrogen
    Gabrielse, G.
    Larochelle, P.
    Le Sage, D.
    Levitt, B.
    Kolthammer, W. S.
    Kuljanishvili, I.
    McConnell, R.
    Wrubel, J.
    Esser, F. M.
    Glueckler, H.
    Grzonka, D.
    Hansen, G.
    Martin, S.
    Oelert, W.
    Schillings, J.
    Schmitt, M.
    Sefzick, T.
    Soltner, H.
    Zhang, Z.
    Comeau, D.
    George, M. C.
    Hessels, E. A.
    Storry, C. H.
    Weel, M.
    Speck, A.
    Nillius, F.
    Walz, J.
    Haensch, T. W.
    PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [5] Simulations of Majorana spin flips in an antihydrogen trap
    Alarcon, M. A.
    Riggert, C. J.
    Robicheaux, F.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (15)
  • [6] Simulations of antihydrogen formation in a nested Penning trap
    Jonsell, S.
    van der Werf, D. P.
    Charlton, M.
    XV INTERNATIONAL WORKSHOP ON LOW ENERGY POSITRON AND POSITRONIUM PHYSICS, 2010, 199
  • [7] Confinement of electrons and ions in a combined trap with the potential for antihydrogen production
    Walz, J
    Ross, SB
    Zimmermann, C
    Ricci, L
    Prevedelli, M
    Hansch, TW
    HYPERFINE INTERACTIONS, 1996, 100 (1-4): : 133 - 144
  • [8] Confinement of electrons and ions in a combined trap with the potential for antihydrogen production
    Walz, J.
    Ross, S. B.
    Zimmermann, C.
    Ricci, L.
    Hyperfine Interactions, 100 (1-4):
  • [9] Confinement of electrons and ions in a combined trap with the potential for antihydrogen production
    Walz, J.
    Ross, S.B.
    Zimmermann, C.
    Ricci, L.
    Prevedelli, M.
    Hänsch, T.W.
    Hyperfine Interactions, 1996, 100 (01): : 133 - 144
  • [10] Storage of an electron plasma in a sextupole radial antihydrogen trap
    Amoretti, M.
    Canali, C.
    Carraro, C.
    Doser, M.
    Lagomarsino, V.
    Manuzio, G.
    Testera, G.
    Zavatarelli, S.
    PHYSICS LETTERS A, 2006, 360 (01) : 141 - 148