Model Calibration Method for Soft Sensors Using Adaptive Gaussian Process Regression

被引:8
|
作者
Guo, Wei [1 ,2 ]
Pan, Tianhong [1 ,2 ]
Li, Zhengming [2 ]
Chen, Shan [2 ]
机构
[1] Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Peoples R China
[2] Jiangsu Univ, Sch Elect Informat & Engn, Zhenjiang 212013, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Gaussian process regression; hyperparameters-varying; model calibration; offset smoother; soft sensor; QUALITY PREDICTION; LEAST-SQUARES; OPTIMIZATION; MIXTURE;
D O I
10.1109/ACCESS.2019.2954158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recursive Gaussian process regression (RGPR) is a popular calibrating method to make the developed soft sensor adapt to the new working condition. Most of existing RGPR models are on the assumption that hyperparameters in the covariance function are fixed during the model calibration. In order to improve the adaptive ability of the RGPR model, hyperparameters in covariance of Gaussian process regression (GPR) are adjusted in parallel by referencing the previous optimization. The matrix inversion formula is selectively used for updating the regression model. And a dynamic offset smoother is presented to further improve the reliability of the proposed method. Applications to a numerical simulation and the penicillin fermentation process evaluate the performance of the proposed method.
引用
收藏
页码:168436 / 168443
页数:8
相关论文
共 50 条
  • [1] CALIBRATION METHOD OF SOFT SENSOR BASED ON BAYESIAN GAUSSIAN PROCESS REGRESSION
    Min, Huan
    Luo, Xionglin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2016, 12 (02): : 543 - 556
  • [2] Development of an Engine Calibration Model Using Gaussian Process Regression
    Tianhong Pan
    Yang Cai
    Shan Chen
    International Journal of Automotive Technology, 2021, 22 : 327 - 334
  • [3] Development of an Engine Calibration Model Using Gaussian Process Regression
    Pan, Tianhong
    Cai, Yang
    Chen, Shan
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2021, 22 (02) : 327 - 334
  • [4] Aerodynamic probe calibration using Gaussian process regression
    Heckmeier, Florian M.
    Breitsamter, Christian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (12)
  • [5] Adaptive Model Predictive Control for Underwater Manipulators Using Gaussian Process Regression
    Liu, Weidong
    Xu, Jingming
    Li, Le
    Zhang, Kang
    Zhang, Hao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (09)
  • [6] An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression
    Lee, Sungyeop
    Chai, Jangbom
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (05) : 2249 - 2257
  • [7] An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression
    Sungyeop Lee
    Jangbom Chai
    Journal of Mechanical Science and Technology, 2019, 33 : 2249 - 2257
  • [8] An AUV Adaptive Sampling Method Based on Gaussian Process Regression
    Yan S.
    Li Y.
    Feng X.
    Jiqiren/Robot, 2019, 41 (02): : 232 - 241
  • [9] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [10] Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression
    Zhang, Shuning
    Chu, Fei
    Deng, Guanlong
    Wang, Fuli
    IEEE ACCESS, 2019, 7 : 118749 - 118763