Analysis of an ultra-low temperature district heating and cooling as a storage system for renewable integration

被引:13
|
作者
Quirosa, Gonzalo [1 ]
Torres, Miguel [1 ]
Soltero, V. M. [2 ]
Chacartegui, Ricardo [1 ,3 ]
机构
[1] Univ Seville, Escuela Tecn Super Ingn, Dept Energy Engn, Ave Descubrimientos S-N, Seville 41092, Spain
[2] Univ Seville, Escuela Politecn Super, Dept Design Engn, Calle Virgen Afr 7, Seville 41011, Spain
[3] Univ Seville, Lab Engn Energy & Environm Sustainabil, ENGREEN, Camino Descubrimientos S-N, Seville 41092, Spain
关键词
District heating and cooling; Ultra-low temperature; Photovoltaic; Energy storage; Sector Coupling; Renewable energy communities; THERMAL-ENERGY STORAGE; FLEXIBILITY; NETWORKS;
D O I
10.1016/j.applthermaleng.2022.119052
中图分类号
O414.1 [热力学];
学科分类号
摘要
Sector coupling is necessary for efficient renewable integration since almost all renewable energy sources depend on environmental parameter variations. This paper follows a research line that studies the application of ultralow temperature district heating and cooling systems, with working temperatures between 6 and 40 degrees C, to integrate renewable sources with a storage strategy, using the distribution network as a storage system. This work analyses the impact on the annual operation of the water volume, insulation characteristics, demand patterns, photovoltaic generation, design temperature limits and European climates. The optimal design of the district heating and cooling as a storage system will differ depending on the objective, to integrate the maximum amount of renewables excess or obtain maximum electricity savings. For the system located in Seville, hot Mediterranean climate, network insulation is almost negligible with water volumes below 30 m3; for greater values, the self-regulation temperature of the district heating and cooling system is relevant. Moreover, the maximum temperature increment in the distribution network is positive to minimise operational costs. Within the analyses performed in different European regions, the better results of grid consumption savings were obtained in hot Mediterranean areas, 33 %, meanwhile better renewable integration into the district system was obtained in the warm Mediterranean, with 65 % of the photovoltaic excess integrated.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers
    Quirosa, Gonzalo
    Torres, Miguel
    Becerra, Jose A.
    Jimenez-Espadafor, Francisco J.
    Chacartegui, Ricardo
    ENERGY, 2023, 278
  • [2] Energy and economic simulation of a renewable energy community applied to a new generation ultra-low temperature district heating and cooling network
    Romagnosi, Michela
    Aprile, Marcello
    Denare, Alice
    53RD AICARR INTERNATIONAL CONFERENCE FROM NZEB TO ZEB: THE BUILDINGS OF THE NEXT DECADES FOR A HEALTHY AND SUSTAINABLE FUTURE, 2024, 523
  • [3] Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy
    Meesenburg, Wiebke
    Ommen, Torben
    Thorsen, Jan Eric
    Elmegaard, Brian
    ENERGY, 2020, 191
  • [4] Integration of Reversible Heat Pumps in Trigeneration Systems for Low-Temperature Renewable District Heating and Cooling Microgrids
    Urbanucci, Luca
    Testi, Daniele
    Bruno, Joan Carles
    APPLIED SCIENCES-BASEL, 2019, 9 (15):
  • [5] Integration of booster heat pumps in ultra-low temperature district heating network: Prototype demonstration and refrigerant charge investigation
    Zhu, Tingting
    Du, Yanjun
    Liang, Jierong
    Rohlfs, Wilko
    Thorsen, Jan Eric
    Elmegaard, Brian
    ENERGY AND BUILDINGS, 2023, 298
  • [6] Booster heat pump with drop-in zeotropic mixtures applied in ultra-low temperature district heating system
    Zhu, Tingting
    Vieren, Elias
    Liang, Jierong
    Thorsen, Jan Eric
    De Paepe, Michel
    Lecompte, Steven
    Elmegaard, Brian
    ENERGY, 2024, 305
  • [7] Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review
    Sarbu, Ioan
    Mirza, Matei
    Muntean, Daniel
    ENERGIES, 2022, 15 (18)
  • [8] Ultra low temperature district heating substation
    Gudmundsson, Oddgeir
    Thorsen, Jan Eric
    Iversen, Johnny
    Euroheat and Power (English Edition), 2014, 11 (01): : 43 - 45
  • [9] Energetic and economic analysis of decoupled strategy for heating and cooling production with CO2 booster heat pumps for ultra-low temperature district network
    Quirosa, Gonzalo
    Torres, Miguel
    Soltero, Victor Manuel
    Chacartegui, Ricardo
    JOURNAL OF BUILDING ENGINEERING, 2022, 45
  • [10] ULTRA-LOW TEMPERATURE STORAGE OF LACTIC STREPTOCOCCI
    COWMAN, RA
    SPECK, ML
    JOURNAL OF DAIRY SCIENCE, 1965, 48 (11) : 1531 - &