Adaptive Quantum Process Tomography via Linear Regression Estimation

被引:0
|
作者
Yu, Qi [1 ]
Dong, Daoyi [1 ]
Wang, Yuanlong [1 ,2 ]
Petersen, Ian R. [3 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
[2] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[3] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT, Australia
关键词
Adaptive quantum process tomography; quantum cybernetics; linear regression estimation; quantum control; HAMILTONIAN IDENTIFICATION; STATE TOMOGRAPHY; QUBIT SYSTEMS; ALGORITHM;
D O I
10.1109/smc42975.2020.9283060
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a recursively adaptive tomography protocol to improve the precision of quantum process estimation for finite dimensional systems. The problem of quantum process tomography is firstly formulated as a parameter estimation problem which can then be solved by the linear regression estimation method. An adaptive algorithm is proposed for the selection of subsequent input states given the previous estimation results. Numerical results show that the proposed adaptive process tomography protocol can achieve an improved level of estimation performance.
引用
收藏
页码:4173 / 4178
页数:6
相关论文
共 50 条
  • [1] Quantum State Tomography via Linear Regression Estimation
    Qi, Bo
    Hou, Zhibo
    Li, Li
    Dong, Daoyi
    Xiang, Guoyong
    Guo, Guangcan
    SCIENTIFIC REPORTS, 2013, 3
  • [2] Quantum State Tomography via Linear Regression Estimation
    Bo Qi
    Zhibo Hou
    Li Li
    Daoyi Dong
    Guoyong Xiang
    Guangcan Guo
    Scientific Reports, 3
  • [3] Optimal quantum detector tomography via linear regression estimation
    Xiao, Shuixin
    Wang, Yuanlong
    Dong, Daoyi
    Zhang, Jun
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4140 - 4145
  • [4] Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment
    Bo Qi
    Zhibo Hou
    Yuanlong Wang
    Daoyi Dong
    Han-Sen Zhong
    Li Li
    Guo-Yong Xiang
    Howard M. Wiseman
    Chuan-Feng Li
    Guang-Can Guo
    npj Quantum Information, 3
  • [5] Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment
    Qi, Bo
    Hou, Zhibo
    Wang, Yuanlong
    Dong, Daoyi
    Zhong, Han-Sen
    Li, Li
    Xiang, Guo-Yong
    Wiseman, Howard M.
    Li, Chuan-Feng
    Guo, Guang-Can
    NPJ QUANTUM INFORMATION, 2017, 3
  • [6] A Brief Review of Linear Regression Estimation in Quantum Tomography
    Cheng, Yanran
    Lou, Zhihui
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 5813 - 5817
  • [7] Quantum state and process tomography via adaptive measurements
    Wang, HengYan
    Zheng, WenQiang
    Yu, NengKun
    Li, KeRen
    Lu, DaWei
    Xin, Tao
    Li, Carson
    Ji, ZhengFeng
    Kribs, David
    Zeng, Bei
    Peng, XinHua
    Du, JiangFeng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (10)
  • [8] Quantum state and process tomography via adaptive measurements
    HengYan Wang
    WenQiang Zheng
    NengKun Yu
    KeRen Li
    DaWei Lu
    Tao Xin
    Carson Li
    ZhengFeng Ji
    David Kribs
    Bei Zeng
    XinHua Peng
    JiangFeng Du
    Science China(Physics,Mechanics & Astronomy), 2016, (10) : 31 - 38
  • [9] Quantum state and process tomography via adaptive measurements
    HengYan Wang
    WenQiang Zheng
    NengKun Yu
    KeRen Li
    DaWei Lu
    Tao Xin
    Carson Li
    ZhengFeng Ji
    David Kribs
    Bei Zeng
    XinHua Peng
    JiangFeng Du
    Science China Physics, Mechanics & Astronomy, 2016, 59
  • [10] State Tomography of Qubit Systems Using Linear Regression Estimation and Adaptive Measurements
    Dong, Daoyi
    Wang, Yuanlong
    Hou, Zhibo
    Qi, Bo
    Pan, Yu
    Xiang, Guo-Yong
    IFAC PAPERSONLINE, 2017, 50 (01): : 13014 - 13019