A high-quality aqueous graphene conductive slurry applied in anode aof lithium-ion batteries

被引:26
|
作者
YongJian, W. U. [1 ,2 ]
Tang RenHeng [2 ]
WenChao, L. I. [2 ]
Ying, Wang [2 ]
Ling, Huang [2 ]
Ouyang LiuZhang [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
[2] Guangdong Res Inst Rare Met, ChinaGuangdong Prov Key Lab Rare Earth Dev & Appl, Guangzhou 510650, Peoples R China
基金
中国国家自然科学基金;
关键词
Dispersants; Graphene; Lithium-ion batteries; Anodes; Silicon dioxide; DISPERSIONS; COMPOSITE; EXFOLIATION; SURFACTANTS; PERFORMANCE;
D O I
10.1016/j.jallcom.2020.154575
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Through a combination of mechanical agitation, ultrasonic dispersion, and modification by different dispersants, including polyvinyl pyrrolidone, sodium lignin sulfonate, and carboxymethylcellulose sodium (CMC), a graphene conductive slurry for lithium-ion batteries anode is prepared. These dispersants can inhibit the agglomeration of graphene and help to build the conductive network when graphene slurry used as a conductive agent for lithium-ion batteries. The SiOx/graphene-CMC electrode shows an excellent electrochemical performance with a first charge/discharge capacity of 1273.8/1723.7 mAh/g and a Coulomb efficiency of 73.9% at a constant current of 100 mA/g. The capacity retention rate of the lithium-ion battery is 84% (1070.2 mAh/g) after 100 cycles under current of 200 mA/g. The results indicate that the dispersant treatment provides a simple mass production method to disperse graphene stably, and the graphene conductive slurry can employ for high-performance SiOx anodes conductive agent. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Overview of Graphene as Anode in Lithium-Ion Batteries
    Ri-Peng Luo
    Wei-Qiang Lyu
    Ke-Chun Wen
    Wei-Dong He
    JournalofElectronicScienceandTechnology, 2018, 16 (01) : 57 - 68
  • [2] Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment
    A. E. Galashev
    O. R. Rakhmanova
    Yu. P. Zaikov
    Physics of the Solid State, 2016, 58 : 1850 - 1857
  • [3] Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment
    Galashev, A. E.
    Rakhmanova, O. R.
    Zaikov, Yu. P.
    PHYSICS OF THE SOLID STATE, 2016, 58 (09) : 1850 - 1857
  • [4] Graphene nanoribbons: High-quality conductive additive for high performance aqueous zinc-ion batteries
    Xiang, Yongsheng
    Tang, Bin
    Zhou, Minquan
    Li, Xinlu
    Wang, Ronghua
    JOURNAL OF ENERGY STORAGE, 2024, 81
  • [5] Hypersaline Aqueous Lithium-Ion Slurry Flow Batteries
    Wei, Jie
    Zhang, Pengbo
    Liu, Yuzhu
    Liang, Junchuan
    Xia, Yuren
    Tao, Anyang
    Zhang, Kaiqiang
    Tie, Zuoxiu
    Jin, Zhong
    ACS ENERGY LETTERS, 2022, 7 (02) : 862 - 870
  • [6] High Reversible Silicon/Graphene Nanocomposite Anode for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Zhao, Weiling
    Xie, Xuedong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (01): : 154 - 164
  • [7] Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries
    Lian, Peichao
    Zhu, Xuefeng
    Liang, Shuzhao
    Li, Zhong
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2010, 55 (12) : 3909 - 3914
  • [8] Graphene composites as anode materials in lithium-ion batteries
    M. Mazar Atabaki
    R. Kovacevic
    Electronic Materials Letters, 2013, 9 : 133 - 153
  • [9] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [10] High quality graphitized graphene as an anode material for lithium ion batteries
    Jiao, LianSheng
    Wu, Tongshun
    Li, HongYan
    Lia, Fenghua
    Niu, Li
    CHEMICAL COMMUNICATIONS, 2015, 51 (88) : 15979 - 15981