Explicit upper bound on the least primitive root modulo p2

被引:1
|
作者
Chen, Bo [1 ]
机构
[1] Sanda Univ, Shanghai 201209, Peoples R China
关键词
Primitive root; explicit upper bound; character sums; Cauchy-Schwarz inequality; PRIME;
D O I
10.1142/S1793042122500233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an explicit upper bound on h(p), the least primitive root modulo p(2). Since a primitive root modulo p is not primitive modulo p(2) if and only if it belongs to the set of integers less than p which are pth power residues modulo p(2), we seek the bounds for N-1(H) and N-2(H) to find H which satisfies N-1(H) - N-2(H) > 0, where, Ni(H) denotes the number of primitive roots modulo p not exceeding H, and N-2(H) denotes the number of pth powers modulo p(2) not exceeding H. The method we mainly use is to estimate the character sums contained in the expressions of the N-1(H) and N-2(H) above. Finally, we show that h(p) < P-0.74 for all primes p. This improves the recent result of Kerr et al.
引用
收藏
页码:389 / 395
页数:7
相关论文
共 50 条
  • [1] The least primitive root modulo p2
    Kerr, Bryce
    McGown, Kevin J.
    Trudgian, Tim
    JOURNAL OF NUMBER THEORY, 2020, 215 : 20 - 27
  • [2] On the average of the least primitive root modulo p
    Elliott, PDTA
    Murata, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 56 : 435 - 454
  • [3] EXPLICIT UPPER BOUNDS ON THE LEAST PRIMITIVE ROOT
    McGown, Kevin J.
    Trudgian, Tim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (03) : 1049 - 1061
  • [4] A NEW PRIME p FOR WHICH THE LEAST PRIMITIVE ROOT (mod p) AND THE LEAST PRIMITIVE ROOT (mod p2) ARE NOT EQUAL
    Paszkiewicz, A.
    MATHEMATICS OF COMPUTATION, 2009, 78 (266) : 1193 - 1195
  • [5] On the least primitive root modulo 2p for odd primes p
    Paszkiewicz, Andrzej
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2009, 55 (04) : 649 - 658
  • [6] On the least square-free primitive root modulo p
    Cohen, Stephen D.
    Trudgian, Tim
    JOURNAL OF NUMBER THEORY, 2017, 170 : 10 - 16
  • [7] On the least prime primitive root modulo a prime
    Paszkiewicz, A
    Schinzel, A
    MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 1307 - 1321
  • [8] The least primitive root mod 2p2
    Elliott, PDTA
    Murata, L
    MATHEMATIKA, 1998, 45 (90) : 371 - 379
  • [9] Eisenstein series modulo p2
    Ahlgren, Scott
    Hanson, Michael
    Raum, Martin
    Richter, Olav K.
    FORUM MATHEMATICUM, 2025,
  • [10] Anisotropic forms modulo p2
    Chakri, L
    Hanine, EM
    ACTA ARITHMETICA, 2003, 108 (02) : 147 - 151