LINEAR PERTURBATIONS FOR THE CRITICAL HENON PROBLEM

被引:0
|
作者
Gladiali, Francesca [1 ]
Grossi, Massimo [2 ]
机构
[1] Univ Sassari, Polcoming, Matemat & Fis, I-07100 Sassari, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the problem { -Delta u = vertical bar x vertical bar(alpha)u(p alpha) + is an element of vertical bar x vertical bar(beta)u in Omega u > 0 in Omega u = 0 on partial derivative Omega where p alpha = N+2+2 alpha/N-2 Omega is a smooth bounded domain of R-N with 0 is an element of Omega and N >= 4. We show that, for alpha >= 0 and 0 <= beta <= N - 4, there exists one solution concentrating at x = 0 as is an element of 0. Moreover, we prove that, if Omega is a ball, there exist no radial solution if alpha = beta > N - 4.
引用
收藏
页码:733 / 752
页数:20
相关论文
共 50 条
  • [1] The asymptotically linear Henon problem
    Amadori, Anna Lisa
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (04)
  • [2] LINEAR PERTURBATIONS FOR THE DIRICHLET PROBLEM
    Mortici, Cristinel
    JOURNAL OF SCIENCE AND ARTS, 2008, (01): : 67 - 69
  • [3] Non-power type perturbation for the critical Henon problem
    Liu, Zhongyuan
    Liu, Ziying
    Xu, Wenhuan
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
  • [4] Bubble tower phenomena for an almost critical Henon type problem
    Liu, Zhongyuan
    APPLICABLE ANALYSIS, 2020, 99 (04) : 636 - 657
  • [5] The effect of linear perturbations on the Yamabe problem
    Esposito, Pierpaolo
    Pistoia, Angela
    Vetois, Jerome
    MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 511 - 560
  • [6] The effect of linear perturbations on the Yamabe problem
    Pierpaolo Esposito
    Angela Pistoia
    Jérôme Vétois
    Mathematische Annalen, 2014, 358 : 511 - 560
  • [7] VARIATIONAL PERTURBATIONS OF LINEAR-QUADRATIC PROBLEM
    PIERI, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (01) : 63 - 77
  • [8] Nonlinear perturbations of a periodic elliptic problem with critical growth
    Alves, CO
    Carriao, PC
    Miyagaki, OH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) : 133 - 146
  • [9] REVERSIBLE PERTURBATIONS OF CONSERVATIVE HENON-LIKE MAPS
    Gonchenko, Marina
    Gonchenko, Sergey
    Safonov, Klim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) : 1875 - 1895
  • [10] THE ROBIN PROBLEM FOR THE HENON EQUATION
    He, Haiyang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (01) : 1 - 11